Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273196

RESUMO

Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.


Assuntos
Monóxido de Carbono , Sulfeto de Hidrogênio , Inflamassomos , Infarto do Miocárdio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Óxido Nítrico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Inflamassomos/metabolismo , Óxido Nítrico/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Animais , Monóxido de Carbono/metabolismo , Gasotransmissores/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia
2.
Epilepsia ; 59(4): 854-865, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29512824

RESUMO

OBJECTIVE: Altered autonomic activity has been implicated in the development of cardiac dysfunction during seizures. This study investigates whether intervening in seizure progression with diazepam will reduce seizure-induced cardiomyopathy. Second, this study examines the hypothesis that combining atenolol with diazepam, as an intervention after seizure onset, will combat cardiac injury during status epilepticus. METHODS: Male Sprague-Dawley rats were implanted with electroencephalographic/electrocardiographic electrodes to allow simultaneous recordings during seizures induced by intrahippocampal (2 nmol, 1 µL) kainic acid (KA). Subcutaneous saline, atenolol (5 mg·kg-1 ), diazepam (5 mg·kg-1 ), or atenolol and diazepam (n = 12/group) were administered at 60 minutes post-KA and daily for 7 days, at which point echocardiography, susceptibility to aconitine-induced arrhythmias, and histology were evaluated. RESULTS: Seizure activity was associated with immediately increased heart rate, QTc interval, and blood pressure (BP; 10%-30% across indices). Seven days postseizure, saline-treated animals were found to have reduced left ventricular function, increased fibrotic scarring, and an elevated risk of aconitine-induced arrhythmias. Diazepam treatment significantly reduced cumulative seizure behaviors by 79% compared to saline-treated animals but offered no cardiac protection. Diazepam significantly raised BP (35%) and increased the risk of bigeminal arrhythmias (36%) compared to saline-treated animals. Atenolol administration, either alone or with diazepam, reduced heart rate, QTc interval, and BP back to control levels. Atenolol also preserved cardiac morphology and reduced arrhythmia risk. SIGNIFICANCE: Attenuation of seizure with diazepam offered no cardiac protection; however, coadministration of atenolol with diazepam prevented the development of seizure-induced cardiac dysfunction. This study demonstrates that atenolol intervention should be strongly considered as an adjunct clinical treatment to reduce cardiomyopathy during seizures.


Assuntos
Atenolol/administração & dosagem , Diazepam/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Convulsões/tratamento farmacológico , Fibrilação Ventricular/prevenção & controle , Animais , Antiarrítmicos/administração & dosagem , Anticonvulsivantes/administração & dosagem , Quimioterapia Combinada , Eletrocardiografia/efeitos dos fármacos , Eletrocardiografia/métodos , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Frequência Cardíaca/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/complicações , Convulsões/fisiopatologia , Telemetria/métodos , Resultado do Tratamento , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/fisiopatologia
3.
Am J Physiol Heart Circ Physiol ; 309(9): H1554-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342065

RESUMO

Seizures are associated with altered autonomic activity, which has been implicated in the development of cardiac dysfunction and structural damage. This study aimed to investigate the involvement of the autonomic nervous system in seizure-induced cardiomyopathy. Male Sprague-Dawley rats (320-350 g) were implanted with EEG/ECG electrodes to allow simultaneous telemetric recordings during seizures induced by intrahippocampal (2 nmol, 1 µl/min) kainic acid and monitored for 7 days. Seizure activity occurred in conjunction with increased heart rate (20%), blood pressure (25%), and QTc prolongation (15%). This increased sympathetic activity was confirmed by the presence of raised plasma noradrenaline levels at 3 h post-seizure induction. By 48 h post-seizure induction, sympathovagal balance was shifted in favor of sympathetic dominance, as indicated by both heart rate variability (LF/HF ratio of 3.5 ± 1.0) and pharmacological autonomic blockade. Functional cardiac deficits were evident at 7 and 28 days, as demonstrated by echocardiography showing a decreased ejection fraction (14% compared with control, P < 0.05) and dilated cardiomyopathy present at 28 days following seizure induction. Histological changes, including cardiomyocyte vacuolization, cardiac fibrosis, and inflammatory cell infiltration, were evident within 48 h of seizure induction and remained present for up to 28 days. These structural changes most probably contributed to an increased susceptibility to aconitine-induced arrhythmias. This study confirms that prolonged seizure activity results in acute and chronic alterations in cardiovascular control, leading to a deterioration in cardiac structure and function. This study further supports the need for modulation of sympathetic activity as a promising therapeutic approach in seizure-induced cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Estado Epiléptico/fisiopatologia , Volume Sistólico/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Aconitina/toxicidade , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Pressão Sanguínea , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/patologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Fibrose , Frequência Cardíaca , Ácido Caínico/toxicidade , Masculino , Norepinefrina/sangue , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/sangue , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/complicações , Vacúolos/patologia , Agonistas do Canal de Sódio Disparado por Voltagem/toxicidade
4.
Am J Physiol Renal Physiol ; 307(3): F251-62, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24899056

RESUMO

Bilateral renal denervation (BRD) has been shown to reduce hypertension and improve renal function in both human and experimental studies. We hypothesized that chronic intervention with BRD may also attenuate renal injury and fibrosis in diabetic nephropathy. This hypothesis was examined in a female streptozotocin-induced diabetic (mRen-2)27 rat (TGR) shown to capture the cardinal features of human diabetic nephropathy. Following diabetic induction, BRD/sham surgeries were conducted repeatedly (at the week 3, 6, and 9 following induction) in both diabetic and normoglycemic animals. Renal denervation resulted in a progressive decrease in systolic blood pressure from first denervation to termination (at 12 wk post-diabetic induction) in both normoglycemic and diabetic rats. Renal norepinephrine content was significantly raised following diabetic induction and ablated in denervated normoglycemic and diabetic groups. A significant increase in glomerular basement membrane thickening and mesangial expansion was seen in the diabetic kidneys; this morphological appearance was markedly reduced by BRD. Immunohistochemistry and protein densitometric analysis of diabetic innervated kidneys confirmed the presence of significantly increased levels of collagens I and IV, α-smooth muscle actin, the ANG II type 1 receptor, and transforming growth factor-ß. Renal denervation significantly reduced protein expression of these fibrotic markers. Furthermore, BRD attenuated albuminuria and prevented the loss of glomerular podocin expression in these diabetic animals. In conclusion, BRD decreases systolic blood pressure and reduces the development of renal fibrosis, glomerulosclerosis, and albuminuria in this model of diabetic nephropathy. The evidence presented strongly suggests that renal denervation may serve as a therapeutic intervention to attenuate the progression of renal injury in diabetic nephropathy.


Assuntos
Injúria Renal Aguda/prevenção & controle , Denervação/métodos , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/complicações , Rim/inervação , Renina/genética , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Membrana Basal/patologia , Diabetes Mellitus Experimental/induzido quimicamente , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose , Heterozigoto , Glomérulos Renais/patologia , Ratos , Ratos Transgênicos , Renina/fisiologia , Estreptozocina/efeitos adversos
5.
Physiol Rep ; 12(6): e15974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491822

RESUMO

Patients undergoing cardiopulmonary bypass procedures require inotropic support to improve hemodynamic function and cardiac output. Current inotropes such as dobutamine, can promote arrhythmias, prompting a demand for improved inotropes with little effect on intracellular Ca2+ flux. Low-dose carbon monoxide (CO) induces inotropic effects in perfused hearts. Using the CO-releasing pro-drug, oCOm-21, we investigated if this inotropic effect results from an increase in myofilament Ca2+ sensitivity. Male Sprague Dawley rat left ventricular cardiomyocytes were permeabilized, and myofilament force was measured as a function of -log [Ca2+ ] (pCa) in the range of 9.0-4.5 under five conditions: vehicle, oCOm-21, the oCOm-21 control BP-21, and levosimendan, (9 cells/group). Ca2+ sensitivity was assessed by the Ca2+ concentration at which 50% of maximal force is produced (pCa50 ). oCOm-21, but not BP-21 significantly increased pCa50 compared to vehicle, respectively (pCa50 5.52 vs. 5.47 vs. 5.44; p < 0.05). No change in myofilament phosphorylation was seen after oCOm-21 treatment. Pretreatment of cardiomyocytes with the heme scavenger hemopexin, abolished the Ca2+ sensitizing effect of oCOm-21. These results support the hypothesis that oCOm-21-derived CO increases myofilament Ca2+ sensitivity through a heme-dependent mechanism but not by phosphorylation. Further analyses will confirm if this Ca2+ sensitizing effect occurs in an intact heart.


Assuntos
Monóxido de Carbono , Miofibrilas , Ratos , Animais , Humanos , Masculino , Monóxido de Carbono/farmacologia , Contração Miocárdica , Ratos Sprague-Dawley , Miócitos Cardíacos , Heme , Cálcio
6.
Am J Pathol ; 179(1): 141-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21703399

RESUMO

Exposure to the excitotoxin domoic acid (DOM) has been shown to produce cardiac lesions in both clinical and animal studies. We have previously shown that DOM failed to directly affect cardiomyocyte viability and energetics, but the development of this cardiomyopathy has remained unexplained. The present study compared effects of high-level seizure induction obtained by intraperitoneal (2 mg/kg) or intrahippocampal (100 pmol) bolus administration of DOM on development of cardiac pathologies in a rat model. Assessment of cardiac pressure derivatives and coronary flow rates revealed a significant time-dependent decrease in combined left ventricular (LV) systolic and diastolic function at 1, 3, 7, and 14 days after intraperitoneal administration and at 7 and 14 days after intrahippocampal DOM administration. LV dysfunction was matched by a similar time-dependent decrease in mitochondrial respiratory control, associated with increased proton leakage, and in mitochondrial enzyme activities. Microscopic examination of the LV midplane revealed evidence of progressive multifocal ischemic damage within the subendocardial, septal, and papillary regions. Lesions ranged from reversible early damage (vacuolization) to hypercontracture and inflammatory necrosis progressing to fibrotic scarring. Plasma proinflammatory IL-1α, IL-1ß, and TNF-α cytokine levels were also increased from 3 days after seizure induction. The observed cardiomyopathies did not differ between intraperitoneal and intrahippocampal groups, providing strong evidence that cardiac damage after DOM exposure is a consequence of a seizure-evoked autonomic response.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cardiomiopatias/etiologia , Ácido Caínico/análogos & derivados , Isquemia Miocárdica/etiologia , Fármacos Neuromusculares Despolarizantes/toxicidade , Convulsões/induzido quimicamente , Animais , Citocinas/sangue , Modelos Animais de Doenças , Ácido Caínico/toxicidade , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Disfunção Ventricular Esquerda/induzido quimicamente
7.
Auton Neurosci ; 204: 98-104, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27727024

RESUMO

Renal innervation operates in conjunction with the intrarenal renin-angiotensin system (RAS) to control tubular reabsorption of sodium and water. This relationship remains unexplored in diabetic nephropathy. This study investigates the effects of acute RAS inhibition and chronic renal denervation on renal function in diabetic rats. Diabetes was induced in mRen-2 rats prior to conducting chronic bilateral denervation in diabetic and normoglycaemic animals. At 12-weeks post-diabetic induction, renal haemodynamics and tubular handling of sodium and water were measured before and after acute captopril infusion. Neither GFR nor renal blood flow were affected by diabetes or chronic renal denervation alone. While captopril produced natriuretic and diuretic responses in chronically-denervated diabetic animals, shown by increases (P<0.05) of 38±14% in absolute (UNaV), and 71±20% in fractional sodium excretion (FENa), and 68±17% in urine volume (UV); in the innervated-diabetic group captopril produced anti-natriuretic effects (UNaV and FENa reduced by 41±10% and 29±13%, respectively; all P<0.05). This difference was not observed however in normoglycaemic groups where RAS inhibition produced anti-natriuretic (normoglycaemic denervated vs. innervated: 56±14% vs. 49±14% UNaV; 45±13% vs. 37±14% FENa) and anti-diuretic (normoglycaemic-denervated vs. innervated: 34±8% vs. 38±10% UV) effects in both denervated and innervated animals. These data indicate that renal neuronal control is altered in chronic hyperglycaemia. The role of the RAS in sodium conservation in the diabetic kidney, appears to be more significant in the absence of renal innervation, suggesting that the interaction between the RAS and renal sympathetic nervous system is responsible for changes in renal function in diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Rim/inervação , Rim/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Captopril/farmacologia , Denervação , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Natriuréticos/farmacologia , Distribuição Aleatória , Ratos Transgênicos , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos
8.
Chem Sci ; 8(8): 5454-5459, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970925

RESUMO

A prodrug strategy for the release of the gasotransmitter CO at physiological pH, based upon 3a-bromo-norborn-2-en-7-one Diels-Alder cycloadducts of 2-bromomaleimides and 2,5-dimethyl-3,4-diphenylcyclopentadienone has been developed. Examples possessing protonated amine and diamine groups showed good water solubility and thermal stability. Half-lives for CO-release in TRIS-sucrose buffer at pH 7.4 ranged from 19 to 75 min at 37 °C and 31 to 32 h at 4 °C. Bioavailability in rats was demonstrated by oral gavage and oCOm-21 showed a dose dependent vasorelaxant effect in pre-contracted rat aortic rings with an EC50 of 1.6 ± 0.9 µM. Increased intracellular CO levels following oCOm-21 exposure were confirmed using a CO specific fluorescent probe.

9.
FASEB J ; 19(9): 1088-95, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15985532

RESUMO

Mitochondrial oxidative damage contributes to a wide range of pathologies, including cardiovascular disorders and neurodegenerative diseases. Therefore, protecting mitochondria from oxidative damage should be an effective therapeutic strategy. However, conventional antioxidants have limited efficacy due to the difficulty of delivering them to mitochondria in situ. To overcome this problem, we developed mitochondria-targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant. Driven by the large mitochondrial membrane potential, the TPP cation concentrates MitoQ several hundred-fold within mitochondria, selectively preventing mitochondrial oxidative damage. To test whether MitoQ was active in vivo, we chose a clinically relevant form of mitochondrial oxidative damage: cardiac ischemia-reperfusion injury. Feeding MitoQ to rats significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia-reperfusion. This protection was due to the antioxidant activity of MitoQ within mitochondria, as an untargeted antioxidant was ineffective and accumulation of the TPP cation alone gave no protection. Therefore, targeting antioxidants to mitochondria in vivo is a promising new therapeutic strategy in the wide range of human diseases such as Parkinson's disease, diabetes, and Friedreich's ataxia where mitochondrial oxidative damage underlies the pathology.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Animais , Citocromos c/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Masculino , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Consumo de Oxigênio/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Ubiquinona/farmacologia
10.
Seizure ; 23(1): 55-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24139618

RESUMO

PURPOSE: Status epilepticus has been increasingly associated with cardiac injury in both clinical and animal studies. Our group has previously shown that excitotoxic seizure induction results in the formation of ischaemic myocardial infarcts and loss of cardiac haemodynamic function. We hypothesised that attenuation of cardiac sympathetic/parasympathetic balance with a central presynaptic α2 agonist, clonidine, can reduce the development of interictal ECG and ventricular morphological changes resulting from kainic acid (KA; 10mg/kg) induced status epilepticus in a conscious rat model. METHODS: Using simultaneous ECG and electrocorticogram (ECoG) radiotelemetry, animals were randomised into saline controls, saline-pretreated KA and clonidine (100 µg/kg, b.i.d.)-pretreated KA groups. Baseline ECG, ECoG and behavioural score recordings were acquired in conscious animals for 2h post-KA administration. RESULTS: Bradycardia and low level seizure activity occurred immediately following KA administration. As seizure activity (ECoG spiking and high level seizure behavioural scoring) progressively increased, tachycardia developed. Both QTc prolongation and T wave amplitude were transiently but significantly increased. Clonidine treatment attenuated seizure activity, increased the latency to onset of seizure behaviour and reduced seizure-induced changes in heart rate, QTc interval, and T wave amplitude. Histological examination of the ventricular myocardium revealed hypercontraction band necrosis, inflammatory cell infiltration, and oedema at 48 h post-KA. In contrast, clonidine-treatment in seizure animals preserved tissue integrity and structure. CONCLUSION: These results demonstrate that KA-induced seizures are associated with altered ECG activity and cardiac structural pathology. We suggest that pharmacological modulation of sympathetic/parasympathetic activity in status epilepticus provides a promising therapeutic approach to reduce seizure-induced cardiomyopathy.


Assuntos
Clonidina/farmacologia , Clonidina/uso terapêutico , Eletrocardiografia/efeitos dos fármacos , Miocárdio/patologia , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/fisiopatologia , Animais , Método Duplo-Cego , Eletrocardiografia/métodos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/patologia , Resultado do Tratamento
11.
Curr Drug Targets ; 14(1): 56-73, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23170797

RESUMO

Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Oxigenoterapia Hiperbárica/métodos , Fármacos Neuroprotetores/uso terapêutico , Administração por Inalação , Animais , Monóxido de Carbono/administração & dosagem , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Monóxido de Carbono/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrogênio/administração & dosagem , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/administração & dosagem , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Gases Nobres/administração & dosagem , Gases Nobres/farmacologia , Gases Nobres/uso terapêutico , Resultado do Tratamento
12.
Basic Clin Pharmacol Toxicol ; 111(1): 31-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22269084

RESUMO

The cytoprotective properties of carbon monoxide (CO) gas and CO-releasing molecules (CORMs) are well established. Despite promising pre-clinical results, little attention has been paid to the toxicological profile of CORMs. The effects of CORM-2 and its CO-depleted molecule (iCORM-2) (20-400 µM) were compared in primary rat cardiomyocytes and two cell lines [human embryonic kidney (HeK) and Madine-Darby canine kidney Cells (MDCK)]. Cells were assessed for cell viability, apoptosis, necrosis, cytology, mitochondrial energetics, oxidative stress and cell cycle arrest markers. In separate experiments, the anti-apoptotic effects of CORM-2 and i-CORM-2 treatment were compared against CO gas treatment in HeK and MDCK lines. H(2)O(2) -induced cellular damage, measured by lactate dehydrogenase (LDH) release from primary cardiomyocytes, was reduced by 20 µM CORM-2; LDH activity, however, was directly inhibited by 400 µM CORM-2. Both CORM-2/iCORM-2 and CO gas decreased cisplatin-induced caspase-3 activity in MDCK and HeK cells suggesting an anti-apoptotic effect. Conversely, both CORM-2 and iCORM-2 induced significant cellular toxicity in the form of decreased cell viability, abnormal cell cytology, increased apoptosis and necrosis, cell cycle arrest and reduced mitochondrial enzyme activity. Comparison of these markers after CO gas administration to MDCK cells found significantly less cellular toxicity than in 100 µM CORM-2/iCORM-2-treated cells. CO gas did not have an adverse effect on mitochondrial energetics and integrity. Release of CO by low concentrations of intact CORM-2 molecules provides cytoprotective effects. These results show, however, that the ruthenium-based CORM by-product, iCORM-2, is cytotoxic and suggest that the accumulation of iCORM-2 would seriously limit any clinical application of the ruthenium-based CORMs.


Assuntos
Apoptose/efeitos dos fármacos , Monóxido de Carbono/metabolismo , Compostos Organometálicos/metabolismo , Animais , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cães , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Rutênio/metabolismo
13.
Toxicol Sci ; 105(2): 395-407, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18596025

RESUMO

Excitatory mediated neuronal injury has been shown to involve a complex cascade of events. However, the associated cardiac damage reported in humans and marine animals following exposure to excitotoxins has not been well characterized. We hypothesized that the excitotoxin domoic acid can traverse cardiac cell membranes and elicit a deleterious effect on cardiac mitochondrial energetics. Domoic acid (0.05-0.25 microM; 10 min) treatment of isolated rat cardiac mitochondria produced a marked decrease of both mitochondrial flavin adenine dinucleotide (FAD)- and nicotinamide adenine linked respiratory control indices (p < 0.001). Enzymatic assays of the mitochondrial electron transport chain (complexes I-V) and the mitochondrial matrix marker enzyme citrate synthase, showed marked concentration-dependent impairment in activity and integrity following exposure to domoic acid (p < 0.01). Similar mitochondrial effects were seen following exposure to the glutamic acid analog, kainic acid (0.5-2 microM). Domoic acid (0.05-10 microM; 40 min) was shown by competitive enzyme-linked immunosorbent assay to traverse the cellular membrane of H9c2 rat cardiac myoblasts. Exposure of intact H9c2 cells to domoic acid (10 microM; 24 h) impaired complex II-III activity but did not compromise cellular viability as assessed using cell quantification or lactate dehydrogenase leakage assays. Assessment of reactive oxygen species (superoxide and hydrogen peroxide) production in both isolated cardiac mitochondria and H9c2 cardiomyocytes failed to show any significant differences following exposure to domoic acid (0.05-5 microM). This is the first study to demonstrate a direct effect of domoic acid on cardiac mitochondrial energetics. However, the absence of substantial damage to intact cardiomyocytes raises questions regarding direct toxicological effects on cardiac energetics or viability under conditions of natural domoic acid exposure.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/análogos & derivados , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Agonistas de Aminoácidos Excitatórios/metabolismo , Técnicas In Vitro , Ácido Caínico/metabolismo , Ácido Caínico/toxicidade , Masculino , Mitocôndrias Cardíacas/enzimologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Miocárdio , Miócitos Cardíacos/enzimologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Fatores de Tempo
14.
Anal Bioanal Chem ; 383(5): 783-6, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16158294

RESUMO

In 1987 a large-scale incident of human poisoning in Canada was traced to commercial mussels contaminated with domoic acid (DOM). Since then, routine screening of shellfish domoic acid content has been carried out using a variety of assays, with liquid chromatography using ultraviolet absorbance detection (LC-UV) or mass spectrometric detection (LC-MS) being the currently accepted standard methodologies. Recently, a highly specific competitive enzyme-linked immunosorbent assay (cELISA) has been developed for the detection and analysis of DOM in commercial shellfish, but its accuracy relative to LC methods has not been independently verified in mammalian tissues. In this study we demonstrate that measurement of rat serum DOM concentration by cELISA gives a good correlation (r2 = 0.993) across a broad range of concentrations when compared to LC-MS analysis, with only a small (15%) overestimation of sample DOM content. In addition, we have developed an extraction method for analysis of DOM in rat brain by cELISA which yields complete recovery across a range of sample dilutions.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Ácido Caínico/análogos & derivados , Espectrometria de Massas/métodos , Microquímica/métodos , Animais , Ácido Caínico/análise , Ácido Caínico/sangue , Ácido Caínico/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Clin Exp Pharmacol Physiol ; 30(1-2): 110-5, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12542463

RESUMO

1. Prolonged ischaemia and reperfusion in heart transplantation results in mitochondrial dysfunction and loss of cardio-energetics. Improved myocardial tolerance to ischaemia-reperfusion can be increased by de novo synthesis of heat shock protein (Hsp) groups, transiently expressed following mild hyperthermic or oxidative stress. Consideration of the roles of various Hsp in ischaemic-reperfused myocardium can provide new insights into potential therapeutic adjuncts to cardiac surgery. 2. Several Hsp classes have been located within or in association with mitochondrial elements. Cardiac Hsp research has focused primarily on the 70 kDa group, involved in protein folding functions within the cytosol and matrix. Similarly, Hsp 60 and 10 have been shown to form a mitochondrial chaperonin complex conferring protection to ischaemia-challenged myocytes. Equally pertinent is Hsp 32, an isoform of the haem-metabolizing enzyme heme oxygenase. 3. Our studies have shown that mitochondrial respiratory enzyme activity can be protected by Hsp, affording protection to cardiac energetics during preservation for transplantation. Upregulation of Hsp 32, 60 and 72 in rats, achieved by mild hyperthermic stress, improved cardiac function, ultrastructure and mitochondrial respiratory and complex activities in ex vivo perfused hearts subjected to cold cardioplegic arrest and ischaemia-reperfusion. Pre-ischaemic mitochondrial complex activities were increased in heat stress versus sham-treated groups for complex I, IV and V. 4. Investigation of the direct effect of upregulation of Hsp 72 by gene transfection resulted in a similar pattern of response, with increased complex I activity and improved ventricular function. 5. These studies provide the first evidence of Hsp-mediated enhancement of mitochondrial energetic capacity. Enhanced protection of mitochondrial energetics, as a result of increased Hsp expression, contributes to the recovery of myocardial function in ischaemia-reperfusion.


Assuntos
Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Animais , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Humanos , Mitocôndrias/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA