Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 571(7766): 505-509, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243369

RESUMO

The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Transcriptoma/genética , Animais , Evolução Biológica , Galinhas/genética , Feminino , Humanos , Macaca mulatta/genética , Masculino , Camundongos , Gambás/genética , Coelhos , Ratos
2.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757834

RESUMO

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios , Laboratórios Clínicos , Projetos Piloto
3.
N Engl J Med ; 374(26): 2553-2562, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27355534

RESUMO

BACKGROUND: Cortical-bone fragility is a common feature in osteoporosis that is linked to nonvertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS: We evaluated four patients with Pyle's disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS: In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyle's disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS: Our study showed that Pyle's disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss National Foundation and the National Institutes of Health.).


Assuntos
Densidade Óssea/genética , Remodelação Óssea/genética , Osteocondrodisplasias/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Adolescente , Animais , Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/metabolismo , Remodelação Óssea/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiologia , Pré-Escolar , Modelos Animais de Doenças , Feminino , Deleção de Genes , Homeostase , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Osteocondrodisplasias/fisiopatologia , Análise de Sequência de DNA , Transdução de Sinais , Proteínas Wnt/metabolismo
4.
Am J Hum Genet ; 92(6): 990-5, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23684011

RESUMO

Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Craniofaciais/genética , Nanismo/genética , Hiperostose Cortical Congênita/genética , Hipocalcemia/genética , Hipoparatireoidismo/genética , Receptores Virais/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/mortalidade , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/mortalidade , Doenças do Desenvolvimento Ósseo/patologia , Criança , Anormalidades Craniofaciais/mortalidade , Anormalidades Craniofaciais/patologia , Nanismo/diagnóstico por imagem , Nanismo/mortalidade , Estudos de Associação Genética , Heterozigoto , Humanos , Hiperostose Cortical Congênita/diagnóstico por imagem , Hiperostose Cortical Congênita/mortalidade , Hipocalcemia/diagnóstico por imagem , Hipocalcemia/mortalidade , Hipoparatireoidismo/diagnóstico por imagem , Hipoparatireoidismo/mortalidade , Lactente , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Hormônio Paratireóideo/deficiência , Radiografia
5.
Environ Microbiol ; 17(1): 91-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24803113

RESUMO

Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.


Assuntos
Genoma Bacteriano , Pseudomonas/genética , Clorobenzoatos/metabolismo , Cromossomos Bacterianos , Ilhas Genômicas , Genômica , Hidrocarbonetos Aromáticos/metabolismo , Redes e Vias Metabólicas , Prófagos/genética , Pseudomonas/classificação , Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética
6.
PLoS Biol ; 10(11): e1001442, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209382

RESUMO

Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.


Assuntos
Ritmo Circadiano , Epigênese Genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Animais , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Metilação de DNA , Meia-Vida , Histonas/genética , Histonas/metabolismo , Cinética , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Sítio de Iniciação de Transcrição , Transcriptoma
7.
PLoS Genet ; 8(4): e1002652, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511887

RESUMO

Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3' to 5' exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3-GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerase II , RNA Mensageiro , Arabidopsis/genética , Flores/genética , Flores/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Meiose/genética , Mutação , Proteínas Nucleares/genética , Fenótipo , Plantas Geneticamente Modificadas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 108(14): 5679-84, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21282665

RESUMO

Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.


Assuntos
Formigas/genética , Evolução Molecular , Genoma de Inseto/genética , Genômica/métodos , Filogenia , Animais , Sequência de Bases , Biologia Computacional , Metilação de DNA , Etiquetas de Sequências Expressas , Hierarquia Social , Masculino , Dados de Sequência Molecular , Receptores Odorantes/genética , Análise de Sequência de DNA , Vitelogeninas/genética
9.
Environ Microbiol ; 15(10): 2681-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23601288

RESUMO

Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22,000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits.


Assuntos
Bactérias/genética , Elementos de DNA Transponíveis/genética , Genoma Bacteriano/genética , Sphingomonas/genética , Bactérias/metabolismo , Microbiologia Ambiental , Biblioteca Gênica , Viabilidade Microbiana/genética , Mutagênese Insercional/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Salicilatos/metabolismo , Sphingomonas/crescimento & desenvolvimento , Sphingomonas/metabolismo , Transcriptoma
10.
Eukaryot Cell ; 11(7): 916-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22581526

RESUMO

The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.


Assuntos
Antifúngicos/farmacologia , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética
11.
Nat Metab ; 5(1): 80-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717752

RESUMO

Methylmalonic aciduria (MMA) is an inborn error of metabolism with multiple monogenic causes and a poorly understood pathogenesis, leading to the absence of effective causal treatments. Here we employ multi-layered omics profiling combined with biochemical and clinical features of individuals with MMA to reveal a molecular diagnosis for 177 out of 210 (84%) cases, the majority (148) of whom display pathogenic variants in methylmalonyl-CoA mutase (MMUT). Stratification of these data layers by disease severity shows dysregulation of the tricarboxylic acid cycle and its replenishment (anaplerosis) by glutamine. The relevance of these disturbances is evidenced by multi-organ metabolomics of a hemizygous Mmut mouse model as well as through identification of physical interactions between MMUT and glutamine anaplerotic enzymes. Using stable-isotope tracing, we find that treatment with dimethyl-oxoglutarate restores deficient tricarboxylic acid cycling. Our work highlights glutamine anaplerosis as a potential therapeutic intervention point in MMA.


Assuntos
Erros Inatos do Metabolismo , Metilmalonil-CoA Mutase , Camundongos , Animais , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Glutamina , Multiômica , Erros Inatos do Metabolismo/genética
12.
J Clin Microbiol ; 50(3): 553-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22170903

RESUMO

A fast and reliable assay for the identification of dermatophyte fungi and nondermatophyte fungi (NDF) in onychomycosis is essential, since NDF are especially difficult to cure using standard treatment. Diagnosis is usually based on both direct microscopic examination of nail scrapings and macroscopic and microscopic identification of the infectious fungus in culture assays. In the last decade, PCR assays have been developed for the direct detection of fungi in nail samples. In this study, we describe a PCR-terminal restriction fragment length polymorphism (TRFLP) assay to directly and routinely identify the infecting fungi in nails. Fungal DNA was easily extracted using a commercial kit after dissolving nail fragments in an Na(2)S solution. Trichophyton spp., as well as 12 NDF, could be unambiguously identified by the specific restriction fragment size of 5'-end-labeled amplified 28S DNA. This assay enables the distinction of different fungal infectious agents and their identification in mixed infections. Infectious agents could be identified in 74% (162/219) of cases in which the culture results were negative. The PCR-TRFLP assay described here is simple and reliable. Furthermore, it has the possibility to be automated and thus routinely applied to the rapid diagnosis of a large number of clinical specimens in dermatology laboratories.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Onicomicose/diagnóstico , Onicomicose/microbiologia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Fungos/genética , Humanos , Unhas/microbiologia , Fatores de Tempo
13.
RNA ; 15(3): 493-501, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19176604

RESUMO

Profiling miRNA levels in cells with miRNA microarrays is becoming a widely used technique. Although normalization methods for mRNA gene expression arrays are well established, miRNA array normalization has so far not been investigated in detail. In this study we investigate the impact of normalization on data generated with the Agilent miRNA array platform. We have developed a method to select nonchanging miRNAs (invariants) and use them to compute linear regression normalization coefficients or variance stabilizing normalization (VSN) parameters. We compared the invariants normalization to normalization by scaling, quantile, and VSN with default parameters as well as to no normalization using samples with strong differential expression of miRNAs (heart-brain comparison) and samples where only a few miRNAs are affected (by p53 overexpression in squamous carcinoma cells versus control). All normalization methods performed better than no normalization. Normalization procedures based on the set of invariants and quantile were the most robust over all experimental conditions tested. Our method of invariant selection and normalization is not limited to Agilent miRNA arrays and can be applied to other data sets including those from one color miRNA microarray platforms, focused gene expression arrays, and gene expression analysis using quantitative PCR.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs , Análise em Microsséries/métodos , Humanos , Modelos Lineares , Sensibilidade e Especificidade
14.
Epidemics ; 37: 100480, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34488035

RESUMO

BACKGROUND: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.7. Based on initial data from the UK and later data from other countries, this variant was estimated to have a transmission fitness advantage of around 40-80 % (Volz et al., 2021; Leung et al., 2021; Davies et al., 2021). AIM: This study aims to estimate the transmission fitness advantage and the effective reproductive number of B.1.1.7 through time based on data from Switzerland. METHODS: We generated whole genome sequences from 11.8 % of all confirmed SARS-CoV-2 cases in Switzerland between 14 December 2020 and 11 March 2021. Based on these data, we determine the daily frequency of the B.1.1.7 variant and quantify the variant's transmission fitness advantage on a national and a regional scale. RESULTS: We estimate B.1.1.7 had a transmission fitness advantage of 43-52 % compared to the other variants circulating in Switzerland during the study period. Further, we estimate B.1.1.7 had a reproductive number above 1 from 01 January 2021 until the end of the study period, compared to below 1 for the other variants. Specifically, we estimate the reproductive number for B.1.1.7 was 1.24 [1.07-1.41] from 01 January until 17 January 2021 and 1.18 [1.06-1.30] from 18 January until 01 March 2021 based on the whole genome sequencing data. From 10 March to 16 March 2021, once B.1.1.7 was dominant, we estimate the reproductive number was 1.14 [1.00-1.26] based on all confirmed cases. For reference, Switzerland applied more non-pharmaceutical interventions to combat SARS-CoV-2 on 18 January 2021 and lifted some measures again on 01 March 2021. CONCLUSION: The observed increase in B.1.1.7 frequency in Switzerland during the study period is as expected based on observations in the UK. In absolute numbers, B.1.1.7 increased exponentially with an estimated doubling time of around 2-3.5 weeks. To monitor the ongoing spread of B.1.1.7, our plots are available online.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Suíça/epidemiologia , Reino Unido
15.
J Exp Med ; 198(9): 1381-9, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14597737

RESUMO

Chemokines are implicated in tumor pathogenesis, although it is unclear whether they affect human cancer progression positively or negatively. We found that activation of the chemokine receptor CCR5 regulates p53 transcriptional activity in breast cancer cells through pertussis toxin-, JAK2-, and p38 mitogen-activated protein kinase-dependent mechanisms. CCR5 blockade significantly enhanced proliferation of xenografts from tumor cells bearing wild-type p53, but did not affect proliferation of tumor xenografts bearing a p53 mutation. In parallel, data obtained in a primary breast cancer clinical series showed that disease-free survival was shorter in individuals bearing the CCR5Delta32 allele than in CCR5 wild-type patients, but only for those whose tumors expressed wild-type p53. These findings suggest that CCR5 activity influences human breast cancer progression in a p53-dependent manner.


Assuntos
Neoplasias da Mama/patologia , Receptores CCR5/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/metabolismo , Divisão Celular , Progressão da Doença , Humanos , Receptores CCR5/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
16.
Microbiology (Reading) ; 156(Pt 3): 884-895, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19942661

RESUMO

Although dermatophytes are the most common agents of superficial mycoses in humans and animals, the molecular basis of the pathogenicity of these fungi is largely unknown. In vitro digestion of keratin by dermatophytes is associated with the secretion of multiple proteases, which are assumed to be responsible for their particular specialization to colonize and degrade keratinized host structures during infection. To investigate the role of individual secreted proteases in dermatophytosis, a guinea pig infection model was established for the zoophilic dermatophyte Arthroderma benhamiae, which causes highly inflammatory cutaneous infections in humans and rodents. By use of a cDNA microarray covering approximately 20-25 % of the A. benhamiae genome and containing sequences of at least 23 protease genes, we revealed a distinct in vivo protease gene expression profile in the fungal cells, which was surprisingly different from the pattern elicited during in vitro growth on keratin. Instead of the major in vitro -expressed proteases, others were activated specifically during infection. These enzymes are therefore suggested to fulfil important functions that are not exclusively associated with the degradation of keratin. Most notably, the gene encoding the serine protease subtilisin 6, which is a known major allergen in the related dermatophyte Trichophyton rubrum and putatively linked to host inflammation, was found to be the most strongly upregulated gene during infection. In addition, our approach identified other candidate pathogenicity-related factors in A. benhamiae, such as genes encoding key enzymes of the glyoxylate cycle and an opsin-related protein. Our work provides what we believe to be the first broad-scale gene expression profile in human pathogenic dermatophytes during infection, and points to putative virulence-associated mechanisms that make these micro-organisms the most successful aetiological agents of superficial mycoses.


Assuntos
Arthrodermataceae/genética , Dermatomicoses/microbiologia , Perfilação da Expressão Gênica , Peptídeo Hidrolases/metabolismo , Animais , Arthrodermataceae/enzimologia , Feminino , Regulação Fúngica da Expressão Gênica , Cobaias , Queratinas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/genética , RNA Fúngico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Syst Biol ; 5: 242, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19225455

RESUMO

In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Polimorfismo Genético , Sequência de Bases , Perfilação da Expressão Gênica , Variação Genética , Locos de Características Quantitativas , Sequências Reguladoras de Ácido Nucleico
18.
Blood ; 112(3): 652-60, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18505781

RESUMO

The biochemical mechanisms controlling the diverse functional outcomes of human central memory (CM) and effector memory (EM) T-cell responses triggered through the T-cell receptor (TCR) remain poorly understood. We implemented reverse phase protein arrays to profile TCR signaling components in human CD8 and CD4 memory T-cell subsets isolated ex vivo. As compared with CD4 CM cells, EM cells express statistically significant increased amounts of SLP-76 and reduced levels of c-Cbl, Syk, Fyn, and LAT. Moreover, in EM cells reduced expression of negative regulator c-Cbl correlates with expression of c-Cbl kinases (Syk and Fyn), PI3K, and LAT. Importantly, consistent with reduced expression of c-Cbl, EM cells display a lower functional threshold than CM cells. Increasing c-Cbl content of EM cells to the same level as that of CM cells using cytosolic transduction, we impaired their proliferation and cytokine production. This regulatory mechanism depends primarily on c-Cbl E3 ubiquitin ligase activity as evidenced by the weaker impact of enzymatically deficient c-Cbl C381A mutant on EM cell functions. Our study reports c-Cbl as a critical regulator of the functional responses of memory T cell subsets and identifies for the first time in humans a mechanism controlling the functional heterogeneity of memory CD4 cells.


Assuntos
Linfócitos T CD4-Positivos/citologia , Expressão Gênica/imunologia , Memória Imunológica , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Citocinas/biossíntese , Regulação para Baixo/imunologia , Humanos , Proteômica , Proteínas Proto-Oncogênicas c-cbl/genética , Subpopulações de Linfócitos T , Ubiquitina-Proteína Ligases/fisiologia , Regulação para Cima/imunologia
19.
Eukaryot Cell ; 8(2): 241-50, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19098130

RESUMO

Dermatophytes are highly specialized filamentous fungi which cause the majority of superficial mycoses in humans and animals. The high secreted proteolytic activity of these microorganisms during growth on proteins is assumed to be linked to their particular ability to exclusively infect keratinized host structures such as the skin stratum corneum, hair, and nails. Individual secreted dermatophyte proteases were recently described and linked with the in vitro digestion of keratin. However, the overall adaptation and transcriptional response of dermatophytes during protein degradation are largely unknown. To address this question, we constructed a cDNA microarray for the human pathogenic dermatophyte Trichophyton rubrum that was based on transcripts of the fungus grown on proteins. Profiles of gene expression during the growth of T. rubrum on soy and keratin protein displayed the activation of a large set of genes that encode secreted endo- and exoproteases. In addition, other specifically induced factors potentially implicated in protein utilization were identified, including heat shock proteins, transporters, metabolic enzymes, transcription factors, and hypothetical proteins with unknown functions. Of particular interest is the strong upregulation of key enzymes of the glyoxylate cycle in T. rubrum during growth on soy and keratin, namely, isocitrate lyase and malate synthase. This broad-scale transcriptional analysis of dermatophytes during growth on proteins reveals new putative pathogenicity-related host adaptation mechanisms of these human pathogenic fungi.


Assuntos
Arthrodermataceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Queratinas/metabolismo , Proteínas de Soja/metabolismo , Tinha/microbiologia , Trichophyton/crescimento & desenvolvimento , Arthrodermataceae/genética , Arthrodermataceae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Trichophyton/genética , Trichophyton/metabolismo
20.
Proteomics ; 9(2): 299-309, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19142957

RESUMO

The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Análise Serial de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Antígeno-Anticorpo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Detergentes/química , Glucosídeos/química , Humanos , Cinética , Modelos Lineares , Ativação Linfocitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA