Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 20(5): 410-421, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034961

RESUMO

Background: Isolation-reared mice show social encounter-induced hyperactivity with activation of prefrontal serotonergic and dopaminergic systems, but it is not known whether this stress response is observed in other pathological conditions. Here we examined whether the social encounter stimulation induces abnormal behavior during withdrawal in chronic methamphetamine-treated mice. Methods: To induce methamphetamine-induced behavioral sensitization, male mice were injected with methamphetamine (1 mg/kg) once daily for 7 days. Results: The encounter with an intruder elicited hyperactivity 24 h after the last injection of methamphetamine in methamphetamine-sensitized mice. This response was observed even as long as 2 weeks after withdrawal of methamphetamine. The encounter increased c-Fos expression in the prefrontal cortex, dorsal raphe nucleus and ventral tegmental area in methamphetamine-sensitized mice, while it did not in control mice. Furthermore, the encounter increased extracellular serotonin (5-HT) and dopamine, but not noradrenaline, levels in the prefrontal cortex in methamphetamine-sensitized mice. Local injection of 5,7-dihydroxytryptamine and 6-hydroxydopamine into the prefrontal cortex attenuated encounter-induced hyperactivity in methamphetamine-sensitized mice and it markedly decreased prefrontal 5-HT and dopamine levels, respectively. Pharmacological analysis showed that the encounter-induced hyperactivity is mediated by dopamine D1 receptors and 5-HT2A receptors and attenuated by anxiolytics and antidepressants such as diazepam, osemozotan and selective 5-HT reuptake inhibitors. The effect of paroxetine was blocked by the 5-HT3 receptor antagonist azasetron. Conclusions: The present study shows that psychological stress elicits hyperactivity with activation of prefrontal 5-HT and dopamine systems in methamphetamine-dependent mice and suggests that the abnormal behavior is associated with anxiety and depression.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Dopamina/metabolismo , Hipercinese/induzido quimicamente , Metanfetamina/toxicidade , Córtex Pré-Frontal/metabolismo , Serotonina/metabolismo , 5,7-Di-Hidroxitriptamina/toxicidade , Animais , Desipramina/uso terapêutico , Dopaminérgicos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hipercinese/tratamento farmacológico , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Microdiálise , Oxidopamina/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Serotoninérgicos/farmacologia , Comportamento Social , Fatores de Tempo
2.
Horm Behav ; 96: 130-136, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28942000

RESUMO

Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model.


Assuntos
Transtorno Autístico/induzido quimicamente , Ocitocina/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Reconhecimento Psicológico/efeitos dos fármacos , Aprendizado Social/efeitos dos fármacos , Ácido Valproico/efeitos adversos , Animais , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/patologia , Transtorno Autístico/psicologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ocitocina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Social
3.
Neurochem Res ; 41(10): 2574-2584, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27300699

RESUMO

Valproic acid (VPA) is a multi-target drug and an inhibitor of histone deacetylase (HDAC). We have previously demonstrated that prenatal exposure to VPA at embryonic day 12.5 (E12.5), but not at E14.5, causes autism-like behavioral abnormalities in male mouse offspring. We have also found that prenatal VPA exposure causes transient histone hyperacetylation in the embryonic brain, followed by decreased neuronal cell numbers in the prefrontal and somatosensory cortices after birth. In the present study, we examined whether prenatal HDAC inhibition affects neuronal maturation in primary mouse cortical neurons. Pregnant mice were injected intraperitoneally with VPA (500 mg/kg) and the more selective HDAC inhibitor trichostatin A (TSA; 500 µg/kg) at E12.5 or E14.5, and primary neuronal cultures were prepared from the cerebral cortices of their embryos. Prenatal exposure to VPA at E12.5, but not at E14.5, decreased total number, total length, and complexity of neuronal dendrites at 14 days in vitro (DIV). The effects of VPA weakened at 21 DIV. Exposure to TSA at E12.5, but not at E14.5, also delayed maturation of cortical neurons. In addition, real-time quantitative PCR revealed that the prenatal exposure to TSA decreased neuroligin-1 (Nlgn1), Shank2, and Shank3 mRNA levels and increased contactin-associated protein-like 2 mRNA level. The delay in neuronal maturation was also observed in Nlgn1-knockdown cells, which were transfected with Nlgn1 siRNA. These findings suggest that prenatal HDAC inhibition causes changes in gene expression of autism-related molecules linked to a delay of neuronal maturation.


Assuntos
Transtorno Autístico/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Transtorno Autístico/patologia , Feminino , Histona Desacetilases/metabolismo , Histonas/metabolismo , Camundongos , Neurônios/metabolismo , Gravidez , Ácido Valproico/farmacologia
4.
J Neurosci Res ; 93(1): 56-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25139675

RESUMO

Cilostazol acts as an antiplatelet agent and has other pleiotropic effects based on phosphodiesterase-3-dependent mechanisms. We evaluated whether cilostazol would have a beneficial effect on neuronal repair following hippocampal neuronal damage by using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus [Ogita et al. (2005) J Neurosci Res 82:609-621]; these mice will hereafter be referred to as impaired animals. A single treatment with cilostazol (10 mg/kg, i.p.) produced no significant change in the number of 5-bromo-2'-deoxyuridine (BrdU)-incorporating cells in the dentate granule cell layer (GCL) or subgranular zone on day 3 after TMT treatment. However, chronic treatment with cilostazol on days 3-15 posttreatment resulted in an increase in the number of BrdU-incorporating cells in the dentate GCL of the impaired animals, and these cells were positive for neuronal nuclear antigen or doublecortin. Cilostazol was effective in elevating the level of phosphorylated cyclic adrenosine monophosphate response element-binding protein (pCREB) in the dentate gyrus of impaired animals. The results of a forced swimming test revealed that the chronic treatment with cilostazol improved the depression-like behavior seen in the impaired animals. In the cultures of hippocampal neural stem/progenitor cells, exposure to cilostazol produced not only enhancement of proliferation activity but also elevation of pCREB levels. Taken together, our data suggest that cilostazol has a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promotion of proliferation and/or neuronal differentiation of neural progenitor cells in the subgranular zone.


Assuntos
Giro Denteado/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tetrazóis/farmacologia , Compostos de Trimetilestanho/toxicidade , Animais , Bromodesoxiuridina/metabolismo , Proteína de Ligação a CREB/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cilostazol , Técnicas In Vitro , Locomoção , Masculino , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Natação
5.
Int J Neuropsychopharmacol ; 18(11): pyv062, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26025781

RESUMO

BACKGROUND: Reduced motivation is an important marker of psychiatric disorders, including depression. We describe the female encounter test, a novel method of evaluating reward-seeking behavior in mice. METHODS: The test apparatus consists of three open chambers, formed with partitions that allow the animal to move freely from one chamber to another. A test male mouse is habituated in the apparatus, and subsequently a female and male mouse are introduced into a wire-mesh box in the left and right chamber, respectively. The time the test male mouse spends in the female or male area is measured for 10 min. RESULTS: All six strains of mice tested showed a significant preference for female encounters. The preference was observed in 7-30-week-old mice. The preference was blocked by castration of the resident male test mouse, and was not affected by the phase of the menstrual cycle of the female intruder. The preference was impaired in mouse models of depression, including social isolation-reared, corticosterone-treated, and lipopolysaccharide-treated mice. The impairment was alleviated by fluvoxamine in isolation-reared and lipopolysaccharide-treated mice, and it was improved by the metabotropic glutamate 2/3 receptor antagonist LY341495 in corticosterone-treated mice. Encounter with a female, but not male, mouse increased c-Fos expression in the nucleus accumbens shell of test male mice. Furthermore, both the preference and encounter-induced increases in c-Fos expression were blocked by dopamine D1 and D2 receptor antagonists. CONCLUSIONS: These findings indicate that motivation in adult male mice can be easily evaluated by quantitating female encounters.


Assuntos
Camundongos/psicologia , Motivação , Testes Psicológicos , Recompensa , Comportamento Social , Aminoácidos/farmacologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Castração , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Corticosterona , Transtorno Depressivo/diagnóstico , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Desenho de Equipamento , Ciclo Estral , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Fluvoxamina/farmacologia , Lipopolissacarídeos , Masculino , Camundongos/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Isolamento Social , Xantenos/farmacologia
6.
Behav Pharmacol ; 26(7 Spec No): 681-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25932719

RESUMO

We have recently found that isolation-reared mice show hyperactivity during an encounter with an intruder. However, it is not known whether encounter-induced hyperactivity may model some aspects of psychiatric disorders. The present study examined the pharmacological profile of encounter-induced hyperactivity in isolation-reared mice. Encounter-induced hyperactivity was reduced by acute administration of various antidepressants including the tricyclic antidepressant desipramine (10 mg/kg), the selective serotonin (5-HT) reuptake inhibitors fluvoxamine (10 mg/kg) and paroxetine (10 mg/kg), the 5-HT/noradrenaline reuptake inhibitors venlafaxine (10 mg/kg) and duloxetine (10 mg/kg), the antipsychotic drug risperidone (0.01 mg/kg), the 5-HT2 antagonist ritanserin (1 mg/kg), and the glucocorticoid receptor antagonist RU-43044 (30 mg/kg). The α2 adrenoceptor agonist clonidine (0.03 mg/kg) and the 5-HT4 receptor agonist BIMU8 (30 mg/kg) also reduced encounter-induced hyperactivity. The effect of desipramine was blocked by the α2 adrenoceptor antagonist idazoxan (0.3 mg/kg). The effect of fluvoxamine was blocked by the 5-HT4 receptor antagonist GR125487 (3 mg/kg), but not the 5-HT1A receptor antagonist WAY100635 (1 mg/kg), the 5-HT3 receptor antagonist azasetron (3 mg/kg), or the 5-HT6 receptor antagonist SB399885 (3 mg/kg). The effect of venlafaxine was blocked by the simultaneous administration of idazoxan (0.3 mg/kg) and GR125487 (3 mg/kg), but not by either compound alone. These findings suggest that encounter-induced hyperactivity in isolation-reared mice is a robust model for testing the pharmacological profile of antidepressants, although the range of antidepressants tested is limited and some non-antidepressants are also effective. The present study also shows a key role of α2 and 5-HT4 receptors in the antidepressant effect in this model.


Assuntos
Atividade Motora/efeitos dos fármacos , Comportamento Social , Isolamento Social/psicologia , Animais , Animais não Endogâmicos , Benzimidazóis/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Desipramina/farmacologia , Cloridrato de Duloxetina/farmacologia , Fluvoxamina/farmacologia , Hidroxicorticosteroides/farmacologia , Idazoxano/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Testes Neuropsicológicos , Oxazinas/farmacologia , Paroxetina/farmacologia , Piperazinas/farmacologia , Psicotrópicos/farmacologia , Piridinas/farmacologia , Risperidona/farmacologia , Ritanserina/farmacologia , Sulfonamidas/farmacologia , Cloridrato de Venlafaxina/farmacologia
7.
J Pharmacol Sci ; 127(2): 232-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25727963

RESUMO

We have found that fluvoxamine-induced increases in prefrontal dopamine release are enhanced by adrenalectomy/castration and 5-HT1A receptors are involved in the enhancement. This study examined which 5-HT1A autoreceptors or postsynaptic receptor play a key role in the enhancement in mice. Adrenalectomy/castration-induced enhancement of fluvoxamine-induced increase in the dopamine release was not blocked by local perfusion with the 5-HT1A receptor antagonist WAY100635 (10 µM), while it was blocked by systemic administration of WAY100635 at low dose (0.1 mg/kg) which blocked preferentially autoreceptor-mediated responses. These finding suggests that 5-HT1A autoreceptors play a key role in the enhancement of prefrontal dopamine release.


Assuntos
Adrenalectomia , Castração , Dopamina/metabolismo , Fluvoxamina/farmacologia , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Masculino , Camundongos Endogâmicos , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
8.
Int J Neuropsychopharmacol ; 17(6): 883-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24405605

RESUMO

We recently showed that social encounter stimulation induces hyperactivity in mice reared in social isolation from early life and this is associated with the transient activation of prefrontal dopaminergic and serotonergic systems. In the present study, we examined the effect of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2, 3-dioxo-6-nitro-1, 2, 3, 4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) on encounter-induced behavioural and neurochemical changes to study the role of the receptor in abnormal behaviours in isolation-reared mice. The encounter to an intruder mouse induced hyperactivity with transient increases in prefrontal dopamine and serotonin levels in isolation-reared mice. NBQX attenuated the encounter-induced hyperactivity and the associated neurochemical changes in isolation-reared mice. In addition, NBQX reduced aggressive behaviour and cognitive impairment in isolation-reared mice, but did not affect depressive-like behaviour or spontaneous hyper-locomotion in these animals. The AMPA receptor agonist (S)-AMPA increased prefrontal dopamine and serotonin release, and this effect was higher in isolation-reared mice than in the group-reared mice, suggesting higher prefrontal AMPA receptor activity in isolation-reared mice. Furthermore, isolation rearing increased the expression of AMPA receptor subunits (GluR1, GluR2 and GluR3) and GluR1 Ser845 phosphorylation in the prefrontal cortex, but not in the hippocampus or nucleus accumbens. Taken together, these results suggest that an increase in AMPA receptor activity in the prefrontal cortex contributes to some, but not all, abnormal behaviours in isolation-reared mice.


Assuntos
Hipercinese/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Receptores de AMPA/metabolismo , Comportamento Social , Isolamento Social , Agressão/efeitos dos fármacos , Agressão/fisiologia , Agressão/psicologia , Animais , Animais não Endogâmicos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/fisiopatologia , Dopamina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Hipercinese/psicologia , Masculino , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de AMPA/agonistas , Receptores de AMPA/antagonistas & inibidores , Serotonina/metabolismo , Isolamento Social/psicologia
9.
Neurochem Res ; 39(5): 825-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24634253

RESUMO

Spontaneously hypertensive rats (SHRs) are used as a model for attention-deficit/hyperactivity disorder (ADHD), since SHRs are hyperactive and show defective sustained attention in behavioral tasks. The psychostimulants amphetamine and methylphenidate and the selective norepinephrine reuptake inhibitor atomoxetine are used as ADHD medications. The effects of high K(+) stimulation or psychostimulants on brain norepinephrine or dopamine release in SHRs have been previously studied both in vitro and in vivo, but the effects of atomoxetine on these neurotransmitters have not. The present study examined the effects of administration of atomoxetine on extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex of juvenile SHRs and Wistar-Kyoto (WKY) rats. Baseline levels of prefrontal norepinephrine, dopamine, and serotonin were similar in SHRs and WKY rats. Systemic administration of atomoxetine (3 mg/kg) induced similar increases in prefrontal norepinephrine and dopamine, but not serotonin, levels in both strains. Furthermore, there was no difference in high K(+)-induced increases in extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex between SHRs and WKY rats. These findings indicate that monoamine systems in the prefrontal cortex are similar between SHRs and WKY rats.


Assuntos
Dopamina/fisiologia , Norepinefrina/fisiologia , Córtex Pré-Frontal/metabolismo , Propilaminas/farmacologia , Serotonina/fisiologia , Animais , Cloridrato de Atomoxetina , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Modelos Animais de Doenças , Masculino , Potássio/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
10.
J Pharmacol Sci ; 124(1): 99-111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24389877

RESUMO

Aripiprazole is used clinically as an atypical antipsychotic. We evaluated the effect of in vivo treatment with aripiprazole on the proliferation and differentiation of neural stem/progenitor cells in a mouse model, trimethyltin-induced neuronal loss/self-repair in the hippocampal dentate gyrus (referred as "impaired animals") [Ogita et al., J Neurosci Res. 82, 609 - 621 (2005)]. In the impaired animals, an increased number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells was seen in the dentate gyrus at the initial time window of the self-repair stage. At the same time window, a single treatment with aripiprazole significantly increased the number of cells positive for both BrdU and nestin in the dentate gyrus of the impaired animals. Chronic treatment with aripiprazole promoted the proliferation/survival and neuronal differentiation of the cells newly-generated following the neuronal loss in the dentate gyrus of the impaired animals. The chronic treatment with aripiprazole improved depression-like behavior seen in the impaired animals. Taken together, our data suggest that aripiprazole had a beneficial effect on neuronal regeneration following neuronal loss in the dentate gyrus through indirectly promoted proliferation/survival and neuronal differentiation of neural stem/progenitor cells in the subgranular zone of the dentate gyrus.


Assuntos
Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Animais , Aripiprazol , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos , Nestina/metabolismo , Compostos de Trimetilestanho/efeitos adversos
11.
J Pharm Health Care Sci ; 10(1): 21, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730458

RESUMO

BACKGROUND: Pharmacists should be aware of their thought processes in dispensing work, including differences in the dispensing complexities owing to different drug positions in the left, center, and right areas. Dispensing errors associated with "same-name drugs (a pair of drugs with the same name but a different ingredient quantity)" are prevalent and often negatively affect patients. In this study, using five pairs of comparative models, the gaze movements of pharmacists in dispensing work were analyzed using an eye-tracking method to elucidate their thought processes. METHODS: We prepared verification slides and displayed them on a prescription monitor and three drug rack monitors. The dispensing information (drug name, drug usage, location display, and total amount) was displayed on a prescription monitor. A total of 180 drugs including five target drugs were displayed on the three drug rack monitors. Total gaze points in the prescription area, those in the drug rack area, total vertical movements between the two areas, and time required to dispense drugs were measured as the four classifications Gaze 1, Gaze 2, Passage, and Time, respectively. First, we defined the two types of location displays as "numeral combination" and "color/symbol combination." Next, we defined two pairs of models A1-A2 (numerals) and B1-B2 (color/symbol) to compare differences between the left and right areas. Moreover, three pairs of models C1-C2 (left), D1-D2 (center), and E1-E2 (right) were established to compare differences between "numeral combination" and "color/symbol combination." RESULTS: Significant differences in the complexities of dispensing work were observed in Gaze 2, Passage, and Time between the models A1-A2 (A1B2), and in Gaze 2 and Time between the models C1-C2, D1-D2, and E1-E2 (C1>C2, D1>D2, and E1>E2, respectively). CONCLUSIONS: Using the current dispensing rules, pharmacists are not good at dispensing drugs located in the right area. An effective measure for reducing the dispensing complexity is to introduce visual information in the prescription content; the utilization of the right brain facilitates reducing the complexity in the right dispensing area.

12.
Nihon Shinkei Seishin Yakurigaku Zasshi ; 32(5-6): 281-5, 2012 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-23373316

RESUMO

Neurological injuries are widely known to promote neurogenesis in the adult hippocampal dentate gyrus. Our previous studies demonstrated that the granule cells in the hippocampal dentate gyrus are injured and eradicated by treatment with trimethyltin (TMT), with being regenerated in the dentate granule cell layer (GCL) after neuronal loss. Recent collective reports indicate that during brain injury and in neurodegenerative disorders, neurogenesis is controlled by cytokines, chemokines, neurotransmitters, and reactive oxygen/nitrogen species, which are released by dying neurons as well as by activated macrophages, micro-glia, and astrocytes. To elucidate the role of activated microglia in the neuroregeneration following the dentate granule cell loss, in this study, we evaluated the involvement of activated microglial cells and a related factor in the generation of newly-generated cells of the hippocampal dentate gyrus following neuronal loss induced by TMT. Our results support the possibility that pro-inflammatory cytokines released from activated microglial cells may be involved in promotion of the neurogenesis mechanism through activation of the NF-kappaB signaling pathway following the dentate neuronal loss induced by TMT treatment.


Assuntos
Giro Denteado/citologia , Giro Denteado/metabolismo , Microglia/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Envelhecimento , Animais , Humanos , Camundongos , Neurônios/metabolismo , Transdução de Sinais/fisiologia
13.
Neurochem Int ; 160: 105415, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36027995

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and the presence of restricted, repetitive behaviors. Additionally, difficulties in sensory processing commonly occur in ASD. Sensory abnormalities include heightened or reduced sensitivity to pain, but the mechanism underlying sensory phenotypes in ASD remain unknown. Emerging evidence suggests that microglia play an important role in forming and refining neuronal circuitry, and thus contribute to neuronal plasticity and nociceptive signaling. In the present study, we investigated the age-dependent tactile sensitivity in an animal model of ASD induced by prenatal exposure to valproic acid (VPA) and subsequently assessed the involvement of microglia in the spinal cord in pain processing. Pregnant ICR (CD1) mice were intraperitoneally injected with either saline or VPA (500 mg/kg) on embryonic day 12.5. Male offspring of VPA-treated mothers showed mechanical allodynia at both 4 and 8 weeks of age. In the spinal cord dorsal horn in prenatally VPA-treated mice, the numbers and staining intensities of ionized calcium-binding adapter molecule 1-positive cells were increased and the cell bodies became enlarged, indicating microglial activation. Treatment with PLX3397, a colony-stimulating factor 1 receptor inhibitor, for 10 days resulted in a decreased number of spinal microglia and attenuated mechanical allodynia in adult mice prenatally exposed to VPA. Additionally, intrathecal injection of Mac-1-saporin, a saporin-conjugated anti-CD11b antibody to deplete microglia, abolished mechanical allodynia. These findings suggest that prenatal VPA treatment causes allodynia and that spinal microglia contribute to the increased nociceptive responses.


Assuntos
Transtorno do Espectro Autista , Hiperalgesia , Dor , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/complicações , Cálcio , Modelos Animais de Doenças , Feminino , Humanos , Hiperalgesia/induzido quimicamente , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia , Dor/induzido quimicamente , Dor/complicações , Dor/tratamento farmacológico , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Saporinas , Ácido Valproico/toxicidade
14.
J Pharmacol Sci ; 115(4): 425-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21422724

RESUMO

Adult neurogenesis is the process of generating new neurons that become integrated into existing circuits after fetal and early postnatal development has ceased. In most mammalian species, adult neurogenesis only appears to occur in the olfactory bulb and the hippocampus, where neural stem/progenitor cells (NPCs) exist to create new neurons. In adult neurogenesis, microenviromental change is thought to provide a specific modulation for maintaining the multi-potent state of these NPCs. Neurodegeneration is driven by the activation of resident microglia, astrocytes, and infiltrating peripheral macrophages, which release a plethora of cytokines, chemokines, neurotransmitters, and reactive oxygen species. These endogenous factors cause further bystander damage to neurons and produces both detrimental and favorable conditions for neurogenesis. Interestingly, these endogenous factors also affect the proliferation, migration, differentiation, and survival of the NPCs, as well as regulate the incorporation of newly formed neurons into the brain circuitry. The unique profile of the endogenous factors released can vary the degree of neuroregeneration after neurodegeneration. This current review summarizes recent knowledge in the emerging field that is showing that adult neurogenesis is regulated by endogenous factors produced during neurodegeneration.


Assuntos
Biomarcadores/metabolismo , Encéfalo/patologia , Encéfalo/fisiologia , Degeneração Neural/fisiopatologia , Doenças Neurodegenerativas/patologia , Neurogênese/fisiologia , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Citocinas/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
15.
Biol Pharm Bull ; 34(12): 1856-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22130242

RESUMO

The organotin trimethyltin (TMT) is well known to cause neuronal degeneration in the hippocampal dentate gyrus of mice. The first purpose of the present study was to examine whether the cyclooxygenase (COX) inhibitor indomethacin could ameliorate neuronal degeneration in the dentate gyrus of mice following TMT treatment in vivo. The systemic injection into mice of TMT at 2.8 mg/kg produced activation of endogenous caspase-3 and calpain, enhanced the gene expression of COX-1 and COX-2, activated microglial cells, and caused the formation of the lipid peroxidation product 4-hydroxynonenal in the hippocampus. Given at 12-h post-TMT treatment, the systemic injection of indomethacin (5 or 10 mg/kg, subcutaneously) significantly decreased the TMT-induced damage to neurons having active caspase-3 and single-stranded DNA in the dentate granule cell layer of the hippocampus. The results of the α-Fodrin degradation test revealed that the post-treatment with indomethacin was effective in attenuating TMT-induced activation of endogenous caspases and calpain in the hippocampus. In TMT-treated animals, interestingly, the post-treatment with indomethacin produced not only activation of microglial cells in the dentate gyrus but also the formation of 4-hydroxynonenal in the dentate granule cell layer. Taken together, our data suggest that COX inhibition by indomethacin ameliorated TMT-induced neuronal degeneration in the dentate gyrus by attenuating intensive oxidative stress.


Assuntos
Inibidores de Ciclo-Oxigenase/uso terapêutico , Giro Denteado/efeitos dos fármacos , Indometacina/uso terapêutico , Microglia/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Aldeídos/metabolismo , Animais , Caspase 3/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Giro Denteado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Indometacina/farmacologia , Masculino , Camundongos , Microglia/citologia , Microglia/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Compostos de Trimetilestanho/toxicidade
16.
Nat Commun ; 11(1): 859, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103003

RESUMO

Pogo transposable element derived with ZNF domain (POGZ) has been identified as one of the most recurrently de novo mutated genes in patients with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), intellectual disability and White-Sutton syndrome; however, the neurobiological basis behind these disorders remains unknown. Here, we show that POGZ regulates neuronal development and that ASD-related de novo mutations impair neuronal development in the developing mouse brain and induced pluripotent cell lines from an ASD patient. We also develop the first mouse model heterozygous for a de novo POGZ mutation identified in a patient with ASD, and we identify ASD-like abnormalities in the mice. Importantly, social deficits can be treated by compensatory inhibition of elevated cell excitability in the mice. Our results provide insight into how de novo mutations on high-confidence ASD genes lead to impaired mature cortical network function, which underlies the cellular pathogenesis of NDDs, including ASD.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Fenótipo , Transposases/genética , Adolescente , Animais , Comportamento Animal , Encéfalo/patologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Feminino , Edição de Genes , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Deficiência Intelectual , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Neurônios/metabolismo
17.
Pharmacol Biochem Behav ; 176: 1-5, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419271

RESUMO

Growing evidence suggests pivotal roles for epigenetic mechanisms in both animal models of and individuals with autism spectrum disorders (ASD). Neuron-restrictive silencer factor (NRSF) binds to neuron-restrictive silencing elements in neuronal genes and recruits co-repressors, such as mSin3, to epigenetically inhibit neuronal gene expression. Because dysregulation of NRSF is related to ASD, here we examined the effects of mS-11, a chemically optimized mimetic of the mSin3-binding helix in NRSF, on the behavioral and morphological abnormalities found in a mouse model of valproic acid (VPA)-induced ASD. Chronic treatment with mS-11 improved prenatal VPA-induced deficits in social interaction. Additionally, we found that NRSF mRNA expression was greater in the somatosensory cortex of VPA-exposed mice than of controls. Agreeing with these behavioral findings, mice that were prenatally exposed to VPA showed lower dendritic spine density in the somatosensory cortex, which was reversed by chronic treatment with mS-11. These findings suggest that mS-11 has the potential for improving ASD-related symptoms through inhibition of mSin3-NRSF binding.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ácido Valproico/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , RNA Mensageiro/genética , Córtex Somatossensorial/metabolismo
18.
Eur J Pharmacol ; 809: 172-177, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28529139

RESUMO

The selective serotonin (5-HT) reuptake inhibitors (SSRIs) are generally used for the treatment of major depressive disorders, and the 5-HT1A and σ1 receptors are considered to be targets for treatment of psychiatric disorders. Some SSRIs such as fluvoxamine have agonistic activity towards for the σ1 receptor, but it is not known whether the effect on the receptor plays a key role in the pharmacological effects. We have recently demonstrated that fluvoxamine shows an anti-anhedonic effect in picrotoxin-induced model of anxiety/depression, while the SSRI paroxetine, which have little affinity for the σ1 receptor, does not. We also suggest that the anti-anhedonic effect of fluvoxamine is mediated by combined activation of the 5-HT1A and σ1 receptors and it is associated with activation of prefrontal dopaminergic system. In these studies, picrotoxin-treated mice and adrenalectomized/castrated mice were used as decreased GABAA receptor function and neurosteroid-deficient models, respectively. These findings suggest that the functional interaction between the 5-HT1A and σ1 receptors activates prefrontal dopaminergic system under the conditions of decreased brain GABAA receptor function and the neurochemical effect is linked to the behavioral effect. This review summarizes the pharmacological role of the 5-HT1A and σ1 receptors, focusing on the functional interaction between these receptors, and the role of prefrontal dopaminergic system in depressive-like behaviors.


Assuntos
Receptor 5-HT1A de Serotonina/metabolismo , Receptores sigma/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Dopamina/metabolismo , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Psicofarmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Receptor Sigma-1
19.
Behav Brain Res ; 333: 67-73, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28655565

RESUMO

We recently demonstrated that prenatal exposure to valproic acid (VPA) at embryonic day 12.5 causes autism spectrum disorder (ASD)-like phenotypes such as hypolocomotion, anxiety-like behavior, social deficits and cognitive impairment in mice and that it decreases dendritic spine density in the hippocampal CA1 region. Previous studies show that some abnormal behaviors are improved by environmental enrichment in ASD rodent models, but it is not known whether environmental enrichment improves cognitive impairment. In the present study, we examined the effects of early environmental enrichment on behavioral abnormalities and neuromorphological changes in prenatal VPA-treated mice. We also examined the role of dendritic spine formation and synaptic protein expression in the hippocampus. Mice were housed for 4 weeks from 4 weeks of age under either a standard or enriched environment. Enriched housing was found to increase hippocampal brain-derived neurotrophic factor mRNA levels in both control and VPA-exposed mice. Furthermore, in VPA-treated mice, the environmental enrichment improved anxiety-like behavior, social deficits and cognitive impairment, but not hypolocomotion. Prenatal VPA treatment caused loss of dendritic spines in the hippocampal CA1 region and decreases in mRNA levels of postsynaptic density protein-95 and SH3 and multiple ankyrin repeat domains 2 in the hippocampus. These hippocampal changes were improved by the enriched housing. These findings suggest that the environmental enrichment improved most ASD-like behaviors including cognitive impairment in the VPA-treated mice by enhancing dendritic spine function.


Assuntos
Anticonvulsivantes/toxicidade , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/complicações , Meio Ambiente , Transtornos Mentais/etiologia , Transtornos Mentais/enfermagem , Ácido Valproico/toxicidade , Animais , Encéfalo/citologia , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Relações Interpessoais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos Mentais/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
20.
Mol Autism ; 8: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670439

RESUMO

BACKGROUND: MicroRNAs, small non-coding RNAs, are highly expressed in the mammalian brain, and the dysregulation of microRNA levels may be involved in neurodevelopmental disorders such as autism spectrum disorder (ASD). In the present study, we examined whether prenatal valproic acid (VPA) exposure affects levels of microRNAs, especially the brain specific and enriched microRNAs, in the mouse embryonic brain. RESULTS: Prenatal exposure to VPA at E12.5 immediately increased miR-132 levels, but not miR-9 or miR-124 levels, in the male embryonic brain. Prenatal exposure to VPA at E12.5 also increased miR-132 levels in the female embryonic brain. We further found that the prenatal exposure to VPA at E12.5 increased mRNA levels of Arc, c-Fos and brain-derived neurotrophic factor in both male and female embryonic brains, prior to miR-132 expression. In contrast, prenatal exposure to VPA at E14.5 did not affect miR-132 levels in either male or female embryonic brain. The prenatal VPA exposure at E12.5 also decreased mRNA levels of methyl-CpG-binding protein 2 and Rho GTPase-activating protein p250GAP, both of which are molecular targets of miR-132. Furthermore, RNA sequence analysis revealed that prenatal VPA exposure caused changes in several microRNA levels other than miR-132 in the embryonic whole brain. CONCLUSIONS: These findings suggest that the alterations in neuronal activity-dependent microRNAs levels, including an increased level of miR-132, in the embryonic period, at least in part, underlie the ASD-like behaviors and cortical pathology produced by prenatal VPA exposure.


Assuntos
Encéfalo/metabolismo , Embrião de Mamíferos/metabolismo , Exposição Materna/efeitos adversos , MicroRNAs/metabolismo , Ácido Valproico/efeitos adversos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA