Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(40): e2208027119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166475

RESUMO

Piezo proteins are mechanosensitive ion channels that can locally curve the membrane into a dome shape [Y. R. Guo, R. MacKinnon, eLife 6, e33660 (2017)]. The curved shape of the Piezo dome is expected to deform the surrounding lipid bilayer membrane into a membrane footprint, which may serve to amplify Piezo's sensitivity to applied forces [C. A. Haselwandter, R. MacKinnon, eLife 7, e41968 (2018)]. If Piezo proteins are embedded in lipid bilayer vesicles, the membrane shape deformations induced by the Piezo dome depend on the vesicle size. We employ here membrane elasticity theory to predict, with no free parameters, the shape of such Piezo vesicles outside the Piezo dome, and show that the predicted vesicle shapes agree quantitatively with the corresponding measured vesicle shapes obtained through cryoelectron tomography, for a range of vesicle sizes [W. Helfrich, Z. Naturforsch. C 28, 693-703 (1973)]. On this basis, we explore the coupling between Piezo and membrane shape and demonstrate that the features of the Piezo dome affecting Piezo's membrane footprint approximately follow a spherical cap geometry. Our work puts into place the foundation for deducing key elastic properties of the Piezo dome from membrane shape measurements and provides a general framework for quantifying how proteins deform bilayer membranes.


Assuntos
Canais Iônicos , Bicamadas Lipídicas , Membrana Celular/metabolismo , Elasticidade , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(40): e2208034119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166476

RESUMO

We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon, Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2208027119 (2022)]. Here we use these results to determine the force that the Piezo dome exerts on the free membrane and hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes. From vesicle shape measurements alone, we thus obtain a force-distortion relationship for the Piezo dome, from which we deduce the Piezo dome's intrinsic radius of curvature, [Formula: see text] nm, and bending stiffness, [Formula: see text], in freestanding lipid bilayer membranes mimicking cell membranes. Applying these estimates to a spherical cap model of Piezo embedded in a lipid bilayer, we suggest that Piezo's intrinsic curvature, surrounding membrane footprint, small stiffness, and large area are the key properties of Piezo that give rise to low-threshold, high-sensitivity mechanical gating.


Assuntos
Canais Iônicos , Bicamadas Lipídicas , Membrana Celular/metabolismo , Elasticidade , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Fenômenos Mecânicos , Mecanotransdução Celular
3.
Soft Matter ; 15(21): 4301-4310, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31070658

RESUMO

Experiments have revealed that membrane proteins often self-assemble into locally ordered clusters. Such membrane protein lattices can play key roles in the functional organization of cell membranes. Membrane protein organization can be driven, at least in part, by bilayer-mediated elastic interactions between membrane proteins. For membrane proteins with anisotropic hydrophobic thickness, bilayer-mediated protein interactions are inherently directional. Here we establish general relations between anisotropy in membrane protein hydrophobic thickness and supramolecular membrane protein organization. We show that protein symmetry is distinctively reflected in the energy landscape of bilayer-mediated protein interactions, favoring characteristic lattice architectures of membrane protein clusters. We find that, in the presence of thermal fluctuations, anisotropy in protein hydrophobic thickness can induce membrane proteins to form mesh-like structures dividing the membrane into compartments. Our results help to elucidate the physical principles and mechanisms underlying the functional organization of cell membranes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Anisotropia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares
4.
Phys Rev Lett ; 117(13): 138103, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715128

RESUMO

In recent experiments [T. Basta et al., Proc. Natl. Acad. Sci. U.S.A. 111, 670 (2014)] lipids and membrane proteins were observed to self-assemble into membrane protein polyhedral nanoparticles (MPPNs) with a well-defined polyhedral protein arrangement and characteristic size. We develop a model of MPPN self-assembly in which the preferred symmetry and size of MPPNs emerge from the interplay of protein-induced lipid bilayer deformations, topological defects in protein packing, and thermal effects. With all model parameters determined directly from experiments, our model correctly predicts the observed symmetry and size of MPPNs. Our model suggests how key lipid and protein properties can be modified to produce a range of MPPN symmetries and sizes in experiments.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Nanopartículas/química , Bicamadas Lipídicas , Modelos Moleculares
5.
PLoS Comput Biol ; 10(12): e1003932, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25503274

RESUMO

In vivo fluorescence microscopy and electron cryo-tomography have revealed that chemoreceptors self-assemble into extended honeycomb lattices of chemoreceptor trimers with a well-defined relative orientation of trimers. The signaling response of the observed chemoreceptor lattices is remarkable for its extreme sensitivity, which relies crucially on cooperative interactions among chemoreceptor trimers. In common with other membrane proteins, chemoreceptor trimers are expected to deform the surrounding lipid bilayer, inducing membrane-mediated anisotropic interactions between neighboring trimers. Here we introduce a biophysical model of bilayer-chemoreceptor interactions, which allows us to quantify the role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices. We find that, even in the absence of direct protein-protein interactions, membrane-mediated interactions can yield assembly of chemoreceptor lattices at very dilute trimer concentrations. The model correctly predicts the observed honeycomb architecture of chemoreceptor lattices as well as the observed relative orientation of chemoreceptor trimers, suggests a series of "gateway" states for chemoreceptor lattice assembly, and provides a simple mechanism for the localization of large chemoreceptor lattices to the cell poles. Our model of bilayer-chemoreceptor interactions also helps to explain the observed dependence of chemotactic signaling on lipid bilayer properties. Finally, we consider the possibility that membrane-mediated interactions might contribute to cooperativity among neighboring chemoreceptor trimers.


Assuntos
Membrana Celular , Modelos Biológicos , Modelos Moleculares , Receptores de Superfície Celular , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Biologia Computacional , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/ultraestrutura
6.
PLoS Comput Biol ; 9(5): e1003055, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696720

RESUMO

The mechanosensitive channel of large conductance (MscL) is capable of transducing mechanical stimuli such as membrane tension into an electrochemical response. MscL provides a widely-studied model system for mechanotransduction and, more generally, for how bilayer mechanical properties regulate protein conformational changes. Much effort has been expended on the detailed experimental characterization of the molecular structure and biological function of MscL. However, despite its central significance, even basic issues such as the physiologically relevant oligomeric states and molecular structures of MscL remain a matter of debate. In particular, tetrameric, pentameric, and hexameric oligomeric states of MscL have been proposed, together with a range of detailed molecular structures of MscL in the closed and open channel states. Previous theoretical work has shown that the basic phenomenology of MscL gating can be understood using an elastic model describing the energetic cost of the thickness deformations induced by MscL in the surrounding lipid bilayer. Here, we generalize this elastic model to account for the proposed oligomeric states and hydrophobic shapes of MscL. We find that the oligomeric state and hydrophobic shape of MscL are reflected in the energetic cost of lipid bilayer deformations. We make quantitative predictions pertaining to the gating characteristics associated with various structural models of MscL and, in particular, show that different oligomeric states and hydrophobic shapes of MscL yield distinct membrane contributions to the gating energy and gating tension. Thus, the functional properties of MscL provide a signature of the oligomeric state and hydrophobic shape of MscL. Our results suggest that, in addition to the hydrophobic mismatch between membrane proteins and the surrounding lipid bilayer, the symmetry and shape of the hydrophobic surfaces of membrane proteins play an important role in the regulation of protein function by bilayer membranes.


Assuntos
Canais Iônicos , Bicamadas Lipídicas , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Biologia Computacional , Proteínas de Escherichia coli , Canais Iônicos/química , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica , Termodinâmica
7.
Nat Struct Mol Biol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060677

RESUMO

The biogenesis and maintenance of thylakoid membranes require vesicle-inducing protein in plastids 1 (VIPP1). VIPP1 is a member of the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, whose members form diverse filament-based supramolecular structures that facilitate membrane deformation and fission. VIPP1 cryo-electron microscopy (EM) structures in solution revealed helical rods and baskets of stacked rings, with amphipathic membrane-binding domains in the lumen. However, how VIPP1 interacts with membranes remains largely unknown. Here, using high-speed atomic force microscopy (HS-AFM), we show that VIPP1 assembles into right-handed chiral spirals and regular polygons on supported lipid bilayers via ESCRT-III-like filament assembly and dynamics. VIPP1 filaments grow clockwise into spirals through polymerization at a ring-shaped central polymerization hub, and into polygons through clockwise polymerization at the sector peripheries. Interestingly, VIPP1 initially forms Archimedean spirals, which upon maturation transform into logarithmic spirals through lateral annealing of strands to the outermore low-curvature spiral turns.

8.
Phys Rev E ; 107(2-1): 024403, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932542

RESUMO

Membrane proteins typically deform the surrounding lipid bilayer membrane, which can play an important role in the function, regulation, and organization of membrane proteins. Membrane elasticity theory provides a beautiful description of protein-induced lipid bilayer deformations, in which all physical parameters can be directly determined from experiments. While analytic solutions of protein-induced elastic bilayer deformations are most easily developed for proteins with approximately circular cross sections, structural biology has shown that membrane proteins come in a variety of distinct shapes, with often considerable deviations from a circular cross section. We develop here a boundary value method (BVM) that permits the construction of analytic solutions of protein-induced elastic bilayer deformations for protein shapes with arbitrarily large deviations from a circular cross section, for constant as well as variable boundary conditions along the bilayer-protein interface. We apply this BVM to protein-induced lipid bilayer thickness deformations. Our BVM reproduces available analytic solutions for proteins with circular cross section and yields, for proteins with noncircular cross section, excellent agreement with numerical, finite element solutions. On this basis, we formulate a simple analytic approximation of the bilayer thickness deformation energy associated with general protein shapes and show that, for modest deviations from rotational symmetry, this analytic approximation is in good agreement with BVM solutions. Using the BVM, we survey the dependence of protein-induced elastic bilayer thickness deformations on protein shape, and thus explore how the coupling of protein shape and bilayer thickness deformations affects protein oligomerization and transitions in protein conformational state.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Conformação Proteica , Elasticidade
9.
Phys Rev E ; 107(2-1): 024409, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932546

RESUMO

Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While, traditionally, QS was thought to involve the exchange of extracellular signal molecules free in solution, recent experiments have shown that for some bacterial systems a substantial fraction of signal molecules are packaged and delivered in extracellular vesicles. How the packaging of signal molecules in extracellular vesicles influences the ability of cells to communicate and coordinate multicellular behaviors remains largely unknown. We present here a stochastic reaction-diffusion model of QS that accounts for the exchange of both freely diffusing and vesicle-associated signal molecules. We find that the delivery of signal molecules via extracellular vesicles amplifies local fluctuations in the signal concentration, which can strongly affect the dynamics and spatial range of bacterial communication. For systems with multiple bacterial colonies, extracellular vesicles provide an alternate pathway for signal transport between colonies, and may be crucial for long-distance signal exchange in environments with strong degradation of free signal molecules.


Assuntos
Bactérias , Vesículas Extracelulares , Percepção de Quorum/fisiologia , Comunicação
10.
Phys Rev E ; 105(5-1): 054410, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706253

RESUMO

Cell membranes are composed of a great variety of protein and lipid species with distinct unperturbed hydrophobic thicknesses. To achieve hydrophobic matching, the lipid bilayer tends to deform around membrane proteins so as to match the protein hydrophobic thickness at bilayer-protein interfaces. Such protein-induced distortions of the lipid bilayer hydrophobic thickness incur a substantial energy cost that depends critically on the bilayer-protein hydrophobic mismatch, while distinct conformational states of membrane proteins often show distinct hydrophobic thicknesses. As a result, hydrophobic interactions between membrane proteins and lipids can yield a rich interplay of lipid-protein organization and transitions in protein conformational state. We combine here the membrane elasticity theory of protein-induced lipid bilayer thickness deformations with the Landau-Ginzburg theory of lipid domain formation to systematically explore the coupling between local lipid organization, lipid and protein hydrophobic thickness, and protein-induced lipid bilayer thickness deformations in membranes with heterogeneous lipid composition. We allow for a purely mechanical coupling of lipid and protein composition through the energetics of protein-induced lipid bilayer thickness deformations as well as a chemical coupling driven by preferential interactions between particular lipid and protein species. We find that the resulting lipid-protein organization can endow membrane proteins with diverse and controlled mechanical environments that, via protein-induced lipid bilayer thickness deformations, can strongly influence protein function. The theoretical approach employed here provides a general framework for the quantitative prediction of how membrane thickness deformations influence the joint organization and function of lipids and proteins in cell membranes.

11.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515266

RESUMO

Piezo1 is the stretch activated Ca2+ channel in red blood cells that mediates homeostatic volume control. Here, we study the organization of Piezo1 in red blood cells using a combination of super-resolution microscopy techniques and electron microscopy. Piezo1 adopts a non-uniform distribution on the red blood cell surface, with a bias toward the biconcave 'dimple'. Trajectories of diffusing Piezo1 molecules, which exhibit confined Brownian diffusion on short timescales and hopping on long timescales, also reflect a bias toward the dimple. This bias can be explained by 'curvature coupling' between the intrinsic curvature of the Piezo dome and the curvature of the red blood cell membrane. Piezo1 does not form clusters with itself, nor does it colocalize with F-actin, Spectrin, or the Gardos channel. Thus, Piezo1 exhibits the properties of a force-through-membrane sensor of curvature and lateral tension in the red blood cell.


Assuntos
Eritrócitos , Canais Iônicos , Canais Iônicos/metabolismo , Fenômenos Mecânicos , Membrana Eritrocítica/metabolismo , Membranas/metabolismo , Mecanotransdução Celular
12.
Phys Rev Lett ; 106(23): 238104, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770547

RESUMO

Neurotransmitter receptor molecules, concentrated in postsynaptic domains along with scaffold and a number of other molecules, are key regulators of signal transmission across synapses. Combining experiment and theory, we develop a quantitative description of synaptic receptor domains in terms of a reaction-diffusion model. We show that interactions between only receptors and scaffolds, together with the rapid diffusion of receptors on the cell membrane, are sufficient for the formation and stable characteristic size of synaptic receptor domains. Our work reconciles long-term stability of synaptic receptor domains with rapid turnover and diffusion of individual receptors, and suggests novel mechanisms for a form of short-term, postsynaptic plasticity.


Assuntos
Membrana Celular/metabolismo , Modelos Biológicos , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Análise de Célula Única/métodos , Sinapses/metabolismo , Animais , Células COS , Técnicas de Cultura de Células , Chlorocebus aethiops , Difusão , Plasticidade Neuronal
13.
Phys Rev E ; 104(3-1): 034410, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654163

RESUMO

Piezo ion channels underlie many forms of mechanosensation in vertebrates and have been found to bend the membrane into strongly curved dome shapes. We develop a methodology describing the self-assembly of lipids and Piezo proteins into polyhedral bilayer vesicles. We validate this methodology for bilayer vesicles formed from bacterial mechanosensitive channels of small conductance, for which experiments found a polyhedral arrangement of proteins with snub cube symmetry and a well-defined characteristic vesicle size. On this basis, we calculate the self-assembly diagram for polyhedral bilayer vesicles formed from Piezo proteins. We find that the radius of curvature of the Piezo dome provides a critical control parameter for the self-assembly of Piezo vesicles, with high abundances of Piezo vesicles with octahedral, icosahedral, and snub cube symmetry with increasing Piezo dome radius of curvature.

14.
Phys Rev E ; 104(2): L022401, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525615

RESUMO

Caveolae are cell membrane invaginations of defined lipid and protein composition that flatten with increasing membrane tension. Super-resolution light microscopy and electron microscopy have revealed that caveolae can take a variety of cuplike shapes. We show here that, for the range in membrane tension relevant for cell membranes, the competition between membrane tension and membrane bending yields caveolae with cuplike shapes similar to those observed experimentally. We find that the caveola shape and its sensitivity to changes in membrane tension can depend strongly on the caveola spontaneous curvature and on the size of caveola domains. Our results suggest that heterogeneity in caveola shape produces a staggered response of caveolae to mechanical perturbations of the cell membrane, which may facilitate regulation of membrane tension over the wide range of scales thought to be relevant for cell membranes.

15.
Sci Adv ; 7(33)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34389539

RESUMO

Clathrin-mediated endocytosis (CME) is the major endocytosis pathway for the specific internalization of large compounds, growth factors, and receptors. Formation of internalized vesicles from the flat plasma membrane is accompanied by maturation of cytoplasmic clathrin coats. How clathrin coats mature and the mechanistic role of clathrin coats are still largely unknown. Maturation models proposed clathrin coats to mature at constant radius or constant area, driven by molecular actions or elastic energy. Here, combining high-speed atomic force microscopy (HS-AFM) imaging, HS-AFM nanodissection, and elasticity theory, we show that clathrin lattices deviating from the intrinsic curvature of clathrin form elastically loaded assemblies. Upon nanodissection of the clathrin network, the stored elastic energy in these lattices drives lattice relaxation to accommodate an ideal area-curvature ratio toward the formation of closed clathrin-coated vesicles. Our work supports that the release of elastic energy stored in curvature-frustrated clathrin lattices could play a major role in CME.

16.
Phys Rev E ; 104(1-1): 014403, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412234

RESUMO

Synaptic receptor and scaffold molecules self-assemble into membrane protein domains, which play an important role in signal transmission across chemical synapses. Experiment and theory have shown that the formation of receptor-scaffold domains of the characteristic size observed in nerve cells can be understood from the receptor and scaffold reaction and diffusion processes suggested by experiments. We employ here kinetic Monte Carlo (KMC) simulations to explore the self-assembly of synaptic receptor-scaffold domains in a stochastic lattice model of receptor and scaffold reaction-diffusion dynamics. For reaction and diffusion rates within the ranges of values suggested by experiments we find, in agreement with previous mean-field calculations, self-assembly of receptor-scaffold domains of a size similar to that observed in experiments. Comparisons between the results of our KMC simulations and mean-field solutions suggest that the intrinsic noise associated with receptor and scaffold reaction and diffusion processes accelerates the self-assembly of receptor-scaffold domains, and confers increased robustness to domain formation. In agreement with experimental observations, our KMC simulations yield a prevalence of scaffolds over receptors in receptor-scaffold domains. Our KMC simulations show that receptor and scaffold reaction-diffusion dynamics can inherently give rise to plasticity in the overall properties of receptor-scaffold domains, which may be utilized by nerve cells to regulate the receptor number at chemical synapses.

17.
Phys Rev Lett ; 105(22): 228101, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21231425

RESUMO

Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra.


Assuntos
Bicamadas Lipídicas/química , Elasticidade , Tensoativos/química , Termodinâmica
18.
Phys Rev E ; 102(4-1): 042411, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212734

RESUMO

Experiments have shown that, in an aqueous environment, lipids and membrane proteins can self-assemble into membrane protein polyhedral nanoparticles (MPPNs). MPPNs are closed, spherical vesicles composed of a lipid bilayer membrane and membrane proteins, with a polyhedral arrangement of membrane proteins. The observed symmetry and size of MPPNs can be understood from the interplay of protein-induced lipid bilayer deformations in MPPNs, topological defects in protein packing necessitated by the spherical shape of MPPNs, and thermal fluctuations in MPPN self-assembly. We explore here the effect of protein steric constraints on MPPN shape. The protein steric constraints considered here may arise from a well-defined shape of protein domains outside the membrane, entropic repulsion between membrane proteins with flexible domains outside the membrane, or binding of other molecules to membrane proteins. Calculating MPPN self-assembly diagrams under protein steric constraints we find that protein steric constraints can strongly affect MPPN self-assembly. Depending on the specific scenario considered, protein steric constraints can leave large portions of the MPPN self-assembly diagrams with no clearly defined MPPN symmetry or substantially expand the regions of MPPN self-assembly diagrams dominated by highly symmetric MPPN states, such as MPPNs with icosahedral or snub cube symmetry. Our results suggest that modification of protein steric constraints may allow the directed self-assembly of MPPNs with specified symmetry, size, and protein composition and may thus facilitate the further utilization of MPPNs for membrane protein structural analysis or targeted drug delivery.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Membrana Celular/metabolismo , Entropia , Domínios Proteicos
19.
Phys Rev E ; 102(6-1): 060401, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33465991

RESUMO

Cell membranes show an intricate organization of lipids and membrane proteins into domains with distinct composition and hydrophobic thickness. Using mechanosensitive ion channels as a model system, we employ the membrane elasticity theory of lipid-protein interactions together with the Landau-Ginzburg theory of lipid domain formation to quantify protein-induced lipid bilayer thickness deformations in lipid bilayers with heterogeneous hydrophobic thickness. We show that protein-induced lipid bilayer thickness deformations yield, without any assumptions about preferential interactions between particular lipid and protein species, organization of lipids and membrane proteins according to their preferred hydrophobic thickness, and couple the conformational states of membrane proteins to the local membrane composition. Our calculations suggest that protein-induced lipid bilayer thickness deformations endow proteins in cell membranes with diverse and controlled mechanical environments that, in turn, allow targeted regulation of membrane proteins.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Termodinâmica
20.
Phys Rev E ; 101(2-1): 022417, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168654

RESUMO

In experiments on membrane protein polyhedral nanoparticles (MPPNs) [Basta et al., Proc. Natl. Acad. Sci. USA 111, 670 (2014)PNASA60027-842410.1073/pnas.1321936111], it has been observed that membrane proteins and lipids can self-assemble into closed lipid bilayer vesicles with a polyhedral arrangement of membrane proteins. In particular, MPPNs formed from the mechanosensitive channel of small conductance (MscS) were found to have the symmetry of the snub cube-a chiral, Archimedean solid-with one MscS protein located at each one of the 24 vertices of the snub cube. It is currently unknown whether MPPNs with heterogeneous protein composition maintain a high degree of symmetry. Inspired by previous work on viral capsid symmetry, we employ here computational modeling to study the symmetry of MPPNs with heterogeneous protein size. We focus on MPPNs formed from MscS proteins, which can exist in closed or open conformational states with distinct sizes. We find that, as an increasing number of closed-state MscS proteins transitions to the open conformational state of MscS, the minimum-energy MscS arrangement in MPPNs follows a strikingly regular pattern, with the dominant MPPN symmetry always being provided by the snub cube. Our results suggest that MPPNs with heterogeneous protein size can be highly symmetric, with a well-defined polyhedral ordering of membrane proteins of different sizes.


Assuntos
Proteínas de Membrana/química , Nanopartículas/química , Modelos Moleculares , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA