Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(34): 10635-40, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26240363

RESUMO

There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Política Pública , Abastecimento de Água , Previsões , Água Doce , Aquecimento Global , Água Subterrânea , Modelos Teóricos , Fatores Socioeconômicos , Estados Unidos , Ciclo Hidrológico
2.
Environ Monit Assess ; 187(7): 415, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26050065

RESUMO

The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Substâncias Explosivas/análise , Água Subterrânea/química , Instalações Militares , Material Particulado/análise , Solo/química , Poluentes Ambientais/química , Substâncias Explosivas/química , Modelos Teóricos , Tamanho da Partícula , Material Particulado/química , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA