Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(23): 5084-5097.e18, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37918394

RESUMO

Anti-NMDA receptor (NMDAR) autoantibodies cause NMDAR encephalitis, the most common autoimmune encephalitis, leading to psychosis, seizures, and autonomic dysfunction. Current treatments comprise broad immunosuppression or non-selective antibody removal. We developed NMDAR-specific chimeric autoantibody receptor (NMDAR-CAAR) T cells to selectively eliminate anti-NMDAR B cells and disease-causing autoantibodies. NMDAR-CAARs consist of an extracellular multi-subunit NMDAR autoantigen fused to intracellular 4-1BB/CD3ζ domains. NMDAR-CAAR T cells recognize a large panel of human patient-derived autoantibodies, release effector molecules, proliferate, and selectively kill antigen-specific target cell lines even in the presence of high autoantibody concentrations. In a passive transfer mouse model, NMDAR-CAAR T cells led to depletion of an anti-NMDAR B cell line and sustained reduction of autoantibody levels without notable off-target toxicity. Treatment of patients may reduce side effects, prevent relapses, and improve long-term prognosis. Our preclinical work paves the way for CAAR T cell phase I/II trials in NMDAR encephalitis and further autoantibody-mediated diseases.


Assuntos
Autoanticorpos , Encefalite , Linfócitos T , Animais , Humanos , Camundongos , Autoanticorpos/metabolismo , Encefalite/metabolismo , Encefalite/terapia , Receptores de N-Metil-D-Aspartato , Doenças Autoimunes , Modelos Animais de Doenças
2.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301653

RESUMO

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Assuntos
Linfócitos B , Tonsila Palatina , Humanos , Adulto , Linfócitos B/metabolismo
3.
Cell ; 167(5): 1264-1280.e18, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28084216

RESUMO

Granulomas are immune cell aggregates formed in response to persistent inflammatory stimuli. Granuloma macrophage subsets are diverse and carry varying copy numbers of their genomic information. The molecular programs that control the differentiation of such macrophage populations in response to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid granuloma-resident macrophages formed via modified cell divisions and mitotic defects and not, as previously thought, by cell-to-cell fusion. TLR2 signaling promoted macrophage polyploidy and suppressed genomic instability by regulating Myc and ATR. We propose that, in the presence of persistent inflammatory stimuli, pathways previously linked to oncogene-initiated carcinogenesis instruct a long-lived granuloma-resident macrophage differentiation program that regulates granulomatous tissue remodeling.


Assuntos
Dano ao DNA , Granuloma/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Inflamação/imunologia , Lipoproteínas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor 2 Toll-Like
5.
Eur J Immunol ; 54(2): e2350484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985207

RESUMO

Spatial organization plays a fundamental role in biology, influencing the function of biological structures at various levels. The immune system, in particular, relies on the orchestrated interactions of immune cells with their microenvironment to mount protective or pathogenic immune responses. The COVID-19 pandemic has underscored the significance of studying immunity within target organs to understand disease progression and severity. To achieve this, multiplex histology and spatial transcriptomics have proven indispensable in providing a spatial context to protein and gene expression patterns. By combining these techniques, researchers gain a more comprehensive understanding of the complex interactions at the cellular and molecular level in distinct tissue niches, key functional units modulating health and disease. In this review, we discuss recent advances in spatial tissue profiling techniques, highlighting their advantages over traditional histopathology studies. The insights gained from these approaches have the potential to revolutionize the diagnosis and treatment of various diseases including cancer, autoimmune disorders, and infectious diseases. However, we also acknowledge their challenges and limitations. Despite these, spatial tissue profiling offers promising opportunities to improve our understanding of how tissue niches direct regional immunity, and their relevance in tissue immunopathology, as a basis for novel therapeutic strategies and personalized medicine.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Pandemias , Progressão da Doença , Perfilação da Expressão Gênica
6.
J Clin Immunol ; 43(2): 371-390, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36282455

RESUMO

PURPOSE: About 15% of patients with common variable immunodeficiency (CVID) develop a small intestinal enteropathy, which resembles celiac disease with regard to histopathology but evolves from a distinct, poorly defined pathogenesis that has been linked in some cases to chronic norovirus (NV) infection. Interferon-driven inflammation is a prominent feature of CVID enteropathy, but it remains unknown how NV infection may contribute. METHODS: Duodenal biopsies of CVID patients, stratified according to the presence of villous atrophy (VA), IgA plasma cells (PCs), and chronic NV infection, were investigated by flow cytometry, multi-epitope-ligand cartography, bulk RNA-sequencing, and RT-qPCR of genes of interest. RESULTS: VA development was connected to the lack of intestinal (IgA+) PC, a T helper 1/T helper 17 cell imbalance, and increased recruitment of granzyme+CD8+ T cells and pro-inflammatory macrophages to the affected site. A mixed interferon type I/III and II signature occurred already in the absence of histopathological changes and increased with the severity of the disease and in the absence of (IgA+) PCs. Chronic NV infection exacerbated this signature when compared to stage-matched NV-negative samples. CONCLUSIONS: Our study suggests that increased IFN signaling and T-cell cytotoxicity are present already in mild and are aggravated in severe stages (VA) of CVID enteropathy. NV infection preempts local high IFN-driven inflammation, usually only seen in VA, at milder disease stages. Thus, revealing the impact of different drivers of the pathological mixed IFN type I/III and II signature may allow for more targeted treatment strategies in CVID enteropathy and supports the goal of viral elimination.


Assuntos
Infecções por Caliciviridae , Imunodeficiência de Variável Comum , Norovirus , Humanos , Atrofia/complicações , Atrofia/patologia , Infecções por Caliciviridae/imunologia , Linfócitos T CD8-Positivos , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/imunologia , Imunoglobulina A , Inflamação/complicações , Interferons , Norovirus/fisiologia
7.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362194

RESUMO

Two-photon excitation fluorescence laser-scanning microscopy is the preferred method for studying dynamic processes in living organ models or even in living organisms. Thanks to near-infrared and infrared excitation, it is possible to penetrate deep into the tissue, reaching areas of interest relevant to life sciences and biomedicine. In those imaging experiments, two-photon excitation spectra are needed to select the optimal laser wavelength to excite as many fluorophores as possible simultaneously in the sample under consideration. The more fluorophores that can be excited, and the more cell populations that can be studied, the better access to their arrangement and interaction can be reached in complex systems such as immunological organs. However, for many fluorophores, the two-photon excitation properties are poorly predicted from the single-photon spectra and are not yet available, in the literature or databases. Here, we present the broad excitation range (760 nm to 1300 nm) of photon-flux-normalized two-photon spectra of several fluorescent proteins in their cellular environment. This includes the following fluorescent proteins spanning from the cyan to the infrared part of the spectrum: mCerulean3, mTurquoise2, mT-Sapphire, Clover, mKusabiraOrange2, mOrange2, LSS-mOrange, mRuby2, mBeRFP, mCardinal, iRFP670, NirFP, and iRFP720.


Assuntos
Corantes Fluorescentes , Fótons , Microscopia de Fluorescência/métodos , Lasers , Óxido de Alumínio
8.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163469

RESUMO

Teriflunomide (TFN) limits relapses in relapsing-remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.


Assuntos
Crotonatos/farmacologia , Hipocampo/fisiologia , Peróxido de Hidrogênio/efeitos adversos , Hidroxibutiratos/farmacologia , Mitocôndrias/metabolismo , Nitrilas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Toluidinas/farmacologia , Animais , Metabolismo Energético , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Consumo de Oxigênio
9.
Z Rheumatol ; 81(8): 652-659, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35412048

RESUMO

Rheumatoid arthritis and osteoarthritis are two related chronic diseases of the musculoskeletal system which are particularly pronounced in the region of joints and bones. Their pathogeneses are associated with chronic inflammation, which can disrupt homeostasis in bones and articular cartilage. Degradation products deriving from articular cartilage can contribute to the exacerbation of inflammation in the joint region. Mechanical stimuli and blood vessels also play a central role in both the regulation of bone growth as well as in the regeneration of bone tissue. Not only chronic inflammatory processes but also hormonal changes after menopause or undesired effects of glucocorticoid therapy have an influence on the balance between bone resorption and deposition, by promoting the former and reducing the latter. This results in decreased bone quality and, in some cases, considerable loss of bone or osteoporosis. An in-depth understanding of these processes at the molecular, cellular, and tissue level, as well as of the changes present in chronic inflammatory diseases, has been the focus of research at the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ) since its foundation. Based on an improved understanding of these mechanisms, the DRFZ aims to develop improved prevention and treatment strategies with effects even in early disease stages.


Assuntos
Cartilagem Articular , Osteoartrite , Feminino , Glucocorticoides , Humanos , Inflamação , Células Estromais
10.
Z Rheumatol ; 81(8): 660-666, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35380249

RESUMO

Various research groups at the German Rheumatism Research Center in Berlin, in close cooperation with the Department of Rheumatology and Clinical Immunology of the Medical Clinic at the Charité, have made important contributions to the significance of B cells and plasma cells in rheumatic diseases, which are relevant not only for rheumatology but for all clinical specialties in which antibody-mediated diseases play a role. In particular, the research addresses impaired B cell homeostasis, the importance of the IgM Fc receptor in the regulation of autoimmunity, the role of long-lived memory plasma cells in maintaining autoimmunity and ensuring its survival in specific niches organized by stromal cells in bone marrow and inflamed tissues. The research results have contributed to a better understanding of the immunological and molecular mechanisms in rheumatic diseases and their treatment. The identification of the long-lived memory plasma cell has led to promising treatment approaches with curative potential in autoimmune diseases.


Assuntos
Doenças Autoimunes , Doenças Reumáticas , Autoimunidade , Linfócitos B , Humanos , Memória Imunológica , Plasmócitos , Doenças Reumáticas/terapia
11.
Proc Natl Acad Sci U S A ; 115(32): E7568-E7577, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038005

RESUMO

Mosquito blood cells are immune cells that help control infection by vector-borne pathogens. Despite their importance, little is known about mosquito blood cell biology beyond morphological and functional criteria used for their classification. Here, we combined the power of single-cell RNA sequencing, high-content imaging flow cytometry, and single-molecule RNA hybridization to analyze a subset of blood cells of the malaria mosquito Anopheles gambiae By demonstrating that blood cells express nearly half of the mosquito transcriptome, our dataset represents an unprecedented view into their transcriptional program. Analyses of differentially expressed genes identified transcriptional signatures of two cell types and provide insights into the current classification of these cells. We further demonstrate the active transfer of a cellular marker between blood cells that may confound their identification. We propose that cell-to-cell exchange may contribute to cellular diversity and functional plasticity seen across biological systems.


Assuntos
Anopheles/genética , Células Sanguíneas/classificação , Plasticidade Celular/genética , Malária/transmissão , Mosquitos Vetores/genética , Animais , Animais Geneticamente Modificados , Anopheles/imunologia , Células Sanguíneas/imunologia , Comunicação Celular/genética , Conjuntos de Dados como Assunto , Feminino , Genômica/métodos , Mosquitos Vetores/imunologia , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma
12.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205072

RESUMO

Two-photon microscopy enables monitoring cellular dynamics and communication in complex systems, within a genuine environment, such as living tissues and, even, living organisms. Particularly, its application to understand cellular interactions in the immune system has brought unique insights into pathophysiologic processes in vivo. Simultaneous multiplexed imaging is required to understand the dynamic orchestration of the multiple cellular and non-cellular tissue compartments defining immune responses. Here, we present an improvement of our previously developed method, which allowed us to achieve multiplexed dynamic intravital two-photon imaging, by using a synergistic strategy. This strategy combines a spectrally broad range of fluorophore emissions, a wave-mixing concept for simultaneous excitation of all targeted fluorophores, and an unmixing algorithm based on the calculation of spectral similarities with previously measured fluorophore fingerprints. The improvement of the similarity spectral unmixing algorithm here described is based on dimensionality reduction of the mixing matrix. We demonstrate its superior performance in the correct pixel-based assignment of probes to tissue compartments labeled by single fluorophores with similar spectral fingerprints, as compared to the full-dimensional similarity spectral unmixing approach.


Assuntos
Comunicação Celular/genética , Microambiente Celular/genética , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Algoritmos , Linhagem Celular , Corantes Fluorescentes/química , Fótons
13.
Eur J Immunol ; 49(9): 1372-1379, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31149730

RESUMO

Bone marrow (BM) stromal cells are important in the development and maintenance of cells of the immune system. Using single cell RNA sequencing, we here explore the functional and phenotypic heterogeneity of individual transcriptomes of 1167 murine BM mesenchymal stromal cells. These cells exhibit a tremendous heterogeneity of gene expression, which precludes the identification of defined subpopulations. However, according to the expression of 108 genes involved in the communication of stromal cells with hematopoietic cells, we have identified 14 non-overlapping subpopulations, with distinct cytokine or chemokine gene expression signatures. With respect to the maintenance of subsets of immune memory cells by stromal cells, we identified distinct subpopulations expressing Il7, Il15 and Tnfsf13b. Together, this study provides a comprehensive dissection of the BM stromal heterogeneity at the single cell transcriptome level and provides a basis to understand their lifestyle and their role as organizers of niches for the long-term maintenance of immune cells.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/fisiologia , Células Estromais/citologia , Transcriptoma/genética , Animais , Fator Ativador de Células B/genética , Células Cultivadas , Citocinas/genética , Células-Tronco Hematopoéticas/citologia , Interleucina-15/genética , Interleucina-7/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA/métodos
14.
Cytometry A ; 97(5): 515-527, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32293804

RESUMO

Two-photon microscopy (2PM) has brought unique insight into the mechanisms underlying immune system dynamics and function since it enables monitoring of cellular motility and communication in complex systems within their genuine environment-the living organism. However, use of 2PM in clinical settings is limited. In contrast, optical coherence tomography (OCT), a noninvasive label-free diagnostic imaging method, which allows monitoring morphologic changes of large tissue regions in vivo, has found broad application in the clinic. Here we developed a combined multimodal technology to achieve near-instantaneous coregistered OCT, 2PM, and second harmonic generation (SHG) imaging over large volumes (up to 1,000 × 1,000 × 300 µm3 ) of tendons and other tissue compartments in mouse paws, as well as in mouse lymph nodes, spleens, and femurs. Using our multimodal imaging approach, we found differences in macrophage cell shape and motility behavior depending on whether they are located in tendons or in the surrounding tissue compartments of the mouse paw. The cellular shape of tissue-resident macrophages, indicative for their role in tissue, correlated with the supramolecular organization of collagen as revealed by SHG and OCT. Hence, the here-presented approach of coregistered OCT and 2PM has the potential to link specific cellular phenotypes and functions (as revealed by 2PM) to tissue morphology (as highlighted by OCT) and thus, to build a bridge between basic research knowledge and clinical observations. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Microscopia , Tomografia de Coerência Óptica , Animais , Movimento Celular , Colágeno , Camundongos , Fótons
15.
Cytometry A ; 97(5): 483-495, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32196971

RESUMO

Bone healing involves the interplay of immune cells, mesenchymal cells, and vasculature over the time course of regeneration. Approaches to quantify the spatiotemporal aspects of bone healing at cellular resolution during long bone healing do not yet exist. Here, a novel technique termed Limbostomy is presented, which combines intravital microendoscopy with an osteotomy. This design allows a modular combination of an internal fixator plate with a gradient refractive index (GRIN) lens at various depths in the bone marrow and can be combined with a surgical osteotomy procedure. The field of view (FOV) covers a significant area of the fracture gap and allows monitoring cellular processes in vivo. The GRIN lens causes intrinsic optical aberrations which have to be corrected. The optical system was characterized and a postprocessing algorithm was developed. It corrects for wave front aberration-induced image plane deformation and for background and noise signals, enabling us to observe subcellular processes. Exemplarily, we quantitatively and qualitatively analyze angiogenesis in bone regeneration. We make use of a transgenic reporter mouse strain with nucleargreen fluorescent protein and membrane-bound tdTomato under the Cadherin-5 promoter. We observe two phases of vascularization. First, rapid vessel sprouting pervades the FOV within 3-4 days after osteotomy. Second, the vessel network continues to be dynamically remodeled until the end of our observation time, 14 days after surgery. Limbostomy opens a unique set of opportunities and allows further insight on spatiotemporal aspects of bone marrow biology, for example, hematopoiesis, analysis of cellular niches, immunological memory, and vascularization in the bone marrow during health and disease. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Cristalino , Lentes , Animais , Medula Óssea , Camundongos , Camundongos Transgênicos , Osteotomia
16.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703416

RESUMO

In the past years, cellular metabolism of the immune system experienced a revival, as it has become clear that it is not merely responsible for the cellular energy supply, but also impacts on many signaling pathways and, thus, on diverse cellular functions. Label-free fluorescence lifetime imaging of the ubiquitous coenzymes NADH and NADPH (NAD(P)H-FLIM) makes it possible to monitor cellular metabolism in living cells and tissues and has already been applied to study metabolic changes both under physiologic and pathologic conditions. However, due to the complex distribution of NAD(P)H-dependent enzymes in cells, whose distribution continuously changes over time, a thorough interpretation of NAD(P)H-FLIM results, in particular, resolving the contribution of various enzymes to the overall metabolic activity, remains challenging. We developed a systematic framework based on angle similarities of the phase vectors and their length to analyze NAD(P)H-FLIM data of cells and tissues based on a generally valid reference system of highly abundant NAD(P)H-dependent enzymes in cells. By using our analysis framework, we retrieve information not only about the overall metabolic activity, i.e., the fraction of free to enzyme-bound NAD(P)H, but also identified the enzymes predominantly active within the sample at a certain time point with subcellular resolution. We verified the performance of the approach by applying NAD(P)H-FLIM on a stromal-like cell line and identified a different group of enzymes that were active in the cell nuclei as compared to the cytoplasm. As the systematic phasor-based analysis framework of label-free NAD(P)H-FLIM can be applied both in vitro and in vivo, it retains the unique power to enable dynamic enzyme-based metabolic investigations, at subcellular resolution, in genuine environments.


Assuntos
Enzimas/metabolismo , NADP/metabolismo , NAD/metabolismo , Imagem Óptica , Mapeamento de Interação de Proteínas , Células 3T3-L1 , Animais , Camundongos
17.
Cytometry A ; 93(9): 876-888, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30107096

RESUMO

The bone marrow (BM) consists of multiple, structured micro-environmental entities-the so called niches, which contain hematopoietic cells as well as stromal cells. These niches fulfill a variety of functions, such as control of the hematopoietic stem cell pool, differentiation of hematopoietic cells, and maintenance of immunological memory. However, due to the molecular and cellular complexity and a lack of suitable histological multiplexing methods, the composition of the various BM niches is still elusive. In this study, we apply multiepitope-ligand-cartography (MELC) on bone sections from mice. We combine multiplexed immunofluorescence histology data with various object-based segmentation approaches in order to define irregularly shaped, net-like structures of stromal cells. We confirm MELC as a robust histological method and validate our automated segmentation algorithms using flow cytometry and manual evaluation. By means of MELC multiplexing, we reveal heterogeneous expression of leptin receptor (LpR), BP-1, and VCAM-1 in the stromal network. Moreover, we demonstrate by quantification a preferential contact of B cell subsets as well as of plasma cells to processes of CXCL12-expressing stromal cells, compared with stromal somata. In summary, our approach is suitable for spatial analysis of complex tissue structures.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/fisiologia , Células Estromais/citologia , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Quimiocina CXCL12/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Receptores para Leptina/metabolismo , Células Estromais/metabolismo , Fatores de Transcrição/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
18.
Cytometry A ; 93(3): 323-333, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29077263

RESUMO

Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry.


Assuntos
Movimento Celular/fisiologia , Análise de Fourier , Intestinos/citologia , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células Mieloides/citologia , Algoritmos , Animais , Linhagem Celular Tumoral , Forma Celular , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Camundongos , Reconhecimento Automatizado de Padrão/métodos
19.
Nat Rev Immunol ; 7(7): 499-504, 2007 07.
Artigo em Inglês | MEDLINE | ID: mdl-17589541

RESUMO

Affinity maturation of antibodies during the course of an adaptive immune response requires germinal centre (GC) formation within B-cell follicles. Much of the current understanding of GC function has been derived from histology, but these static views have left unresolved many questions about cell movement in GCs. In this Progress article, we describe how several recent studies using time-resolved multiphoton microscopy to track GC B-cell movement within lymph nodes have shed light on the processes that influence GC B-cell dynamics.


Assuntos
Diferenciação Celular , Movimento Celular , Centro Germinativo/citologia , Microscopia/métodos , Animais , Linfócitos B/citologia , Humanos
20.
Int J Mol Sci ; 19(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734661

RESUMO

The balance between various cellular subsets of the innate and adaptive immune system and microbiota in the gastrointestinal tract is carefully regulated to maintain tolerance to the normal flora and dietary antigens, while protecting against pathogens. The intestinal epithelial cells and the network of dendritic cells and macrophages in the lamina propria are crucial lines of defense that regulate this balance. The complex relationship between the myeloid compartment (dendritic cells and macrophages) and lymphocyte compartment (T cells and innate lymphoid cells), as well as the impact of the epithelial cell layer have been studied in depth in recent years, revealing that the regulatory and effector functions of both innate and adaptive immune compartments exhibit more plasticity than had been previously appreciated. However, little is known about the metabolic activity of these cellular compartments, which is the basic function underlying all other additional tasks the cells perform. Here we perform intravital NAD(P)H fluorescence lifetime imaging in the small intestine of fluorescent reporter mice to monitor the NAD(P)H-dependent metabolism of epithelial and myeloid cells. The majority of myeloid cells which comprise the surveilling network in the lamina propria have a low metabolic activity and remain resting even upon stimulation. Only a few myeloid cells, typically localized at the tip of the villi, are metabolically active and are able to activate NADPH oxidases upon stimulation, leading to an oxidative burst. In contrast, the epithelial cells are metabolically highly active and, although not considered professional phagocytes, are also able to activate NADPH oxidases, leading to massive production of reactive oxygen species. Whereas the oxidative burst in myeloid cells is mainly catalyzed by the NOX2 isotype, in epithelial cells other isotypes of the NADPH oxidases family are involved, especially NOX4. They are constitutively expressed by the epithelial cells, but activated only on demand to ensure rapid defense against pathogens. This minimizes the potential for inadvertent damage from resting NOX activation, while maintaining the capacity to respond quickly if needed.


Assuntos
Intestino Delgado/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Animais , Enterócitos/enzimologia , Enterócitos/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Intestino Delgado/enzimologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , NADPH Oxidase 2/genética , NADPH Oxidase 4/genética , NADPH Oxidases/genética , Fagócitos/enzimologia , Fagócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA