Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(3): 80, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281302

RESUMO

Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.


Assuntos
Aedes , Bacillus thuringiensis , Culex , Culicidae , Animais , Bacillus thuringiensis/metabolismo , Culicidae/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidade , Endotoxinas/química , Toxinas de Bacillus thuringiensis , Sequência de Aminoácidos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Larva , Cátions/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/química
2.
Dent Mater J ; 43(3): 460-468, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719584

RESUMO

This study investigated residual stresses in glass crowns cemented with resin cements. Glass caps were cemented to cylindrical cores using a conventional resin composite cement, a self-adhesive resin cement, or a methyl methacrylate (MMA)-based cement in dual-cure or self-cure mode. The cemented caps were stored in 37°C water for 28 days, and stresses on the cap surface were repeatedly measured. The water sorption, water solubility, and elastic modulus of the cements were also measured. Polymerization of the cements initially generated compressive stresses on the surfaces. Dual-curing or a greater modulus yielded greater initial stress. The stresses gradually decreased over time and lingered on the surfaces at 28 days with all the cements. Greater sorption tended to lead to greater stress reduction; however, the MMA-based cement exhibited less stress reduction despite exhibiting the greatest sorption. The use of a resin composite cement or dual-curing is recommended to reinforce crown restorations.


Assuntos
Coroas , Vidro , Teste de Materiais , Polimerização , Cimentos de Resina , Água , Cimentos de Resina/química , Água/química , Vidro/química , Análise do Estresse Dentário , Módulo de Elasticidade , Estresse Mecânico , Resinas Compostas/química , Propriedades de Superfície , Metilmetacrilato/química , Solubilidade
3.
Biology (Basel) ; 12(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132307

RESUMO

Mpp46Ab is a mosquito-larvicidal pore-forming toxin derived from Bacillus thuringiensis TK-E6. Pore formation is believed to be a central mode of Mpp46Ab action, and the cation selectivity of the channel pores, in particular, is closely related to its mosquito-larvicidal activity. In the present study, we constructed a mutant library in which residue K155 within the transmembrane ß-hairpin was randomly replaced with other amino acid residues. Upon mutagenesis and following primary screening using Culex pipiens mosquito larvae, we obtained 15 mutants in addition to the wild-type toxin. Bioassays using purified proteins revealed that two mutants, K155E and K155I, exhibited toxicity significantly higher than that of the wild-type toxin. Although increased cation selectivity was previously reported for K155E channel pores, we demonstrated in the present study that the cation selectivity of K155I channel pores was also significantly increased. Considering the characteristics of the amino acids, the charge of residue 155 may not directly affect the cation selectivity of Mpp46Ab channel pores. Replacement of K155 with glutamic acid or isoleucine may induce a similar conformational change in the region associated with the ion selectivity of the Mpp46Ab channel pores. Mutagenesis targeting the transmembrane ß-hairpin may be an effective strategy for enhancing the ion permeability of the channel pores and the resulting mosquito-larvicidal activity of Mpp46Ab.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA