Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406548, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218783

RESUMO

The cycloaddition reaction involving bicyclo[1.1.0]butanes (BCBs) offers a versatile and efficient synthetic platform for producing C(sp3)-rich rigid bridged ring scaffolds, which act as phenyl bioisosteres. However, there is a scarcity of catalytic asymmetric cycloadditions of BCBs to fulfill the need for enantioenriched saturated bicycles in drug design and development. In this study, an efficient synthesis of valuable azabicyclo[2.1.1]hexanes (aza-BCHs) by an enantioselective zinc-catalyzed (3+2) cycloadditions of BCBs with imines is reported. The reaction proceeds effectively with a novel type of BCB that incorporates a 2-acyl imidazole group and a diverse array of alkynyl- and aryl-substituted imines. The target aza-BCHs, which consist of α-chiral amine fragments and two quaternary carbon centers, are efficiently synthesized with up to 94% yield and 96.5:3.5 er under mild conditions. Experimental and computational studies reveal that the reaction follows a concerted nucleophilic ring-opening mechanism of BCBs with imines. This mechanism is distinct from previous studies on Lewis acid-catalyzed cycloadditions of BCBs.

2.
Nat Commun ; 15(1): 8005, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39266575

RESUMO

The absence of catalytic asymmetric methods for synthesizing chiral (hetero)bicyclo[n.1.1]alkanes has hindered their application in new drug discovery. Here we demonstrate the achievability of an asymmetric polar cycloaddition of bicyclo[1.1.0]butane using a chiral Lewis acid catalyst and a bidentate chelating bicyclo[1.1.0]butane substrate, as exemplified by the current enantioselective formal (3 + 3) cycloaddition of bicyclo[1.1.0]butanes with nitrones. In addition to the diverse bicyclo[1.1.0]butanes incorporating an acyl imidazole group or an acyl pyrazole moiety, a wide array of nitrones are compatible with this Lewis acid catalysis, successfully assembling two congested quaternary carbon centers and a chiral aza-trisubstituted carbon center in the pharmaceutically important hetero-bicyclo[3.1.1]heptane product with up to 99% yield and >99% ee.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA