Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767747

RESUMO

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Assuntos
Inflamação/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Purinas/biossíntese , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Transdução de Sinais
2.
J Biol Chem ; 296: 100719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33933451

RESUMO

Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot-Marie-Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.


Assuntos
Proteínas da Mielina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Glicosilação , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Proteínas da Mielina/química , Proteínas da Mielina/genética , Conformação Proteica , Transporte Proteico
3.
J Clin Invest ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39404231

RESUMO

Females have an increased prevalence of many Th17 cell-mediated diseases, including asthma. Androgen signaling decreases Th17 cell-mediated airway inflammation, and Th17 cells rely on glutaminolysis. However, it remains unclear whether androgen receptor (AR) signaling modifies glutamine metabolism to suppress Th17 cell-mediated airway inflammation. We show that Th17 cells from male humans and mice had decreased glutaminolysis compared to females, and that AR signaling attenuated Th17 cell mitochondrial respiration and glutaminolysis in mice. Using allergen-induced airway inflammation mouse models, we determined females had a selective reliance upon glutaminolysis for Th17-mediated airway inflammation, and AR signaling attenuated glutamine uptake in CD4+ T cells by reducing expression of glutamine transporters. Minimal reliance on glutamine uptake in male Th17 cells compared to female Th17 cells was also found in circulating T cells from patients with asthma. AR signaling thus attenuates glutaminolysis, demonstrating sex-specific metabolic regulation of Th17 cells with implications for Th17 or glutaminolysis targeted therapeutics.

4.
Sci Immunol ; 9(99): eadp3475, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303018

RESUMO

Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.


Assuntos
Dano ao DNA , Febre , Inflamação , Mitocôndrias , Animais , Dano ao DNA/imunologia , Camundongos , Inflamação/imunologia , Febre/imunologia , Humanos , Mitocôndrias/imunologia , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Feminino , Masculino
5.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745344

RESUMO

Amino acid (AA) uptake is essential for T cell metabolism and function, but how tissue sites and inflammation affect CD4+ T cell subset requirements for specific AA remains uncertain. Here we tested CD4+ T cell AA demands with in vitro and multiple in vivo CRISPR screens and identify subset- and tissue-specific dependencies on the AA transporter SLC38A1 (SNAT1). While dispensable for T cell persistence and expansion over time in vitro and in vivo lung inflammation, SLC38A1 was critical for Th1 but not Th17 cell-driven Experimental Autoimmune Encephalomyelitis (EAE) and contributed to Th1 cell-driven inflammatory bowel disease. SLC38A1 deficiency reduced mTORC1 signaling and glycolytic activity in Th1 cells, in part by reducing intracellular glutamine and disrupting hexosamine biosynthesis and redox regulation. Similarly, pharmacological inhibition of SLC38 transporters delayed EAE but did not affect lung inflammation. Subset- and tissue-specific dependencies of CD4+ T cells on AA transporters may guide selective immunotherapies.

6.
Cell Rep ; 42(2): 112109, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807139

RESUMO

Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.


Assuntos
Cromatina , Replicação do DNA , Animais , DNA/metabolismo , Xenopus laevis
7.
Cell Mol Immunol ; 19(3): 316-326, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35039633

RESUMO

T cell metabolism is dynamic and highly regulated. While the intrinsic metabolic programs of T cell subsets are integral to their distinct differentiation and functional patterns, the ability of cells to acquire nutrients and cope with hostile microenvironments can limit these pathways. T cells must function in a wide variety of tissue settings, and how T cells interpret these signals to maintain an appropriate metabolic program for their demands or if metabolic mechanisms of immune suppression restrain immunity is an area of growing importance. Both in inflamed and cancer tissues, a wide range of changes in physical conditions and nutrient availability are now acknowledged to shape immunity. These include fever and increased temperatures, depletion of critical micro and macro-nutrients, and accumulation of inhibitory waste products. Here we review several of these factors and how the tissue microenvironment both shapes and constrains immunity.


Assuntos
Neoplasias , Humanos , Inflamação , Subpopulações de Linfócitos T , Microambiente Tumoral
8.
Cell Rep ; 31(9): 107705, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492421

RESUMO

5-Hydroxymethylcytosine (5hmC) binding, ES-cell-specific (HMCES) crosslinks to apurinic or apyrimidinic (AP, abasic) sites in single-strand DNA (ssDNA). To determine whether HMCES responds to the ssDNA abasic site in cells, we exploited the activity of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3A (APOBEC3A). APOBEC3A preferentially deaminates cytosines to uracils in ssDNA, which are then converted to abasic sites by uracil DNA glycosylase. We find that HMCES-deficient cells are hypersensitive to nuclear APOBEC3A localization. HMCES relocalizes to chromatin in response to nuclear APOBEC3A and protects abasic sites from processing into double-strand breaks (DSBs). Abasic sites induced by APOBEC3A slow both leading and lagging strand synthesis, and HMCES prevents further slowing of the replication fork by translesion synthesis (TLS) polymerases zeta (Polζ) and kappa (Polκ). Thus, our study provides direct evidence that HMCES responds to ssDNA abasic sites in cells to prevent DNA cleavage and balance the engagement of TLS polymerases.


Assuntos
Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Proteínas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citidina Desaminase/genética , Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Desaminação , Endonucleases/antagonistas & inibidores , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Enzimas Multifuncionais/antagonistas & inibidores , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Uracila/metabolismo , Uracila-DNA Glicosidase/metabolismo
9.
Cell Rep ; 29(2): 422-436.e5, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597101

RESUMO

Termination of DNA replication occurs when two replication forks converge upon the same stretch of DNA. Resolution of topological stress by topoisomerases is crucial for fork convergence in bacteria and viruses, but it is unclear whether similar mechanisms operate during vertebrate termination. Using Xenopus egg extracts, we show that topoisomerase II (Top2) resolves topological stress to prevent converging forks from stalling during termination. Under these conditions, stalling arises due to an inability to unwind the final stretch of DNA ahead of each fork. By promoting fork convergence, Top2 facilitates all downstream events of termination. Converging forks ultimately overcome stalling independently of Top2, indicating that additional mechanisms support fork convergence. Top2 acts throughout replication to prevent the accumulation of topological stress that would otherwise stall converging forks. Thus, termination poses evolutionarily conserved topological problems that can be mitigated by careful execution of the earlier stages of replication.


Assuntos
Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Xenopus/metabolismo , Animais , DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Humanos , Masculino , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA