Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5013, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973465

RESUMO

Hydrocarbon-degrading bacteria, which can be found living with eukaryotic phytoplankton, play a pivotal role in the fate of oil spillage to the marine environment. Considering the susceptibility of calcium carbonate-bearing phytoplankton under future ocean acidification conditions and their oil-degrading communities to oil exposure under such conditions, we investigated the response of non-axenic E. huxleyi to crude oil under ambient versus elevated CO2 concentrations. Under elevated CO2 conditions, exposure to crude oil resulted in the immediate decline of E. huxleyi, with concomitant shifts in the relative abundance of Alphaproteobacteria and Gammaproteobacteria. Survival of E. huxleyi under ambient conditions following oil enrichment was likely facilitated by enrichment of oil-degraders Methylobacterium and Sphingomonas, while the increase in relative abundance of Marinobacter and unclassified Gammaproteobacteria may have increased competitive pressure with E. huxleyi for micronutrient acquisition. Biodegradation of the oil was not affected by elevated CO2 despite a shift in relative abundance of known and putative hydrocarbon degraders. While ocean acidification does not appear to affect microbial degradation of crude oil, elevated mortality responses of E. huxleyi and shifts in the bacterial community illustrates the complexity of microalgal-bacterial interactions and highlights the need to factor these into future ecosystem recovery projections.


Assuntos
Petróleo , Petróleo/toxicidade , Petróleo/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Água do Mar/microbiologia , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Fitoplâncton/metabolismo
2.
Sci Rep ; 12(1): 8052, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577824

RESUMO

Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45-67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.


Assuntos
Antozoários , Animais , Antozoários/química , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química , Água , Microtomografia por Raio-X
3.
Sci Rep ; 12(1): 20389, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437278

RESUMO

Despite cold-water coral (CWC) reefs being considered biodiversity hotspots, very little is known about the main processes driving their morphological development. Indeed, there is a considerable knowledge gap in quantitative experimental studies that help understand the interaction between reef morphology, near-bed hydrodynamics, coral growth, and (food) particle transport processes. In the present study, we performed a 2-month long flume experiment in which living coral nubbins were placed on a reef patch to determine the effect of a unidirectional flow on the growth and physiological condition of Lophelia pertusa. Measurements revealed how the presence of coral framework increased current speed and turbulence above the frontal part of the reef patch, while conditions immediately behind it were characterised by an almost stagnant flow and reduced turbulence. Owing to the higher current speeds that likely promoted a higher food encounter rate and intake of ions involved in the calcification process, the coral nubbins located on the upstream part of the reef presented a significantly enhanced average growth and a lower expression of stress-related enzymes than the downstream ones. Yet, further experiments would be needed to fully quantify how the variations in water hydrodynamics modify particle encounter and ion intake rates by coral nubbins located in different parts of a reef, and how such discrepancies may ultimately affect coral growth. Nonetheless, the results acquired here denote that a reef influenced by a unidirectional water flow would grow into the current: a pattern of reef development that coincides with that of actual coral reefs located in similar water flow settings. Ultimately, the results of this study suggest that at the local scale coral reef morphology has a direct effect on coral growth thus, indicating that the spatial patterns of living CWC colonies in reef patches are the result of spatial self-organisation.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Retroalimentação , Recifes de Corais , Biodiversidade , Água
4.
Sci Total Environ ; 752: 142168, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207512

RESUMO

Improving the ecological status of water sources is a growing focus for many developed and developing nations, in particular with reducing nitrogen and phosphorus in wastewater effluent. In recent years, mixotrophic micro-algae have received increased interest in implementing them as part of wastewater treatment. This is based on their ability to utilise organic and inorganic carbon, as well as inorganic nitrogen (N) and phosphorous (P) in wastewater for their growth, with the desired results of a reduction in the concentration of these substances in the water. The aim of this review is to provide a critical account of micro-algae as an important step in wastewater treatment for enhancing the reduction of N, P and the chemical oxygen demand (COD) in wastewater, whilst utilising a fraction of the energy demand of conventional biological treatment systems. Here, we begin with an overview of the various steps in the treatment process, followed by a review of the cellular and metabolic mechanisms that micro-algae use to reduce N, P and COD of wastewater with identification of when the process may potentially be most effective. We also describe the various abiotic and biotic factors influencing micro-algae wastewater treatment, together with a review of bioreactor configuration and design. Furthermore, a detailed overview is provided of the current state-of-the-art in the use of micro-algae in wastewater treatment.


Assuntos
Microalgas , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
5.
PeerJ ; 4: e1606, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26855864

RESUMO

Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

6.
PLoS One ; 9(5): e98218, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24873971

RESUMO

Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.


Assuntos
Temperatura Baixa , Recifes de Corais , Ecossistema , Água do Mar , Algoritmos , Biodiversidade , Monitoramento Ambiental , Hidrodinâmica , Modelos Teóricos , Oceanografia , Oceanos e Mares , Tecnologia de Sensoriamento Remoto , Reprodutibilidade dos Testes , Escócia
7.
Sci Rep ; 4: 3671, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24441283

RESUMO

Ocean acidification has been suggested as a serious threat to the future existence of cold-water corals (CWC). However, there are few fine-scale temporal and spatial datasets of carbonate and nutrients conditions available for these reefs, which can provide a baseline definition of extant conditions. Here we provide observational data from four different sites in the northeast Atlantic that are known habitats for CWC. These habitats differ by depth and by the nature of the coral habitat. At depths where CWC are known to occur across these sites the dissolved inorganic carbon ranged from 2088 to 2186 µmol kg(-1), alkalinity ranged from 2299 to 2346 µmol kg(-1), and aragonite Ω ranged from 1.35 to 2.44. At two sites fine-scale hydrodynamics caused increased variability in the carbonate and nutrient conditions over daily time-scales. The observed high level of variability must be taken into account when assessing CWC sensitivities to future environmental change.


Assuntos
Carbonatos/química , Recifes de Corais , Ecossistema , Água do Mar/química , Oceano Atlântico , Geografia , Salinidade
8.
J Phycol ; 49(2): 349-60, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27008521

RESUMO

Periodic and seasonal exposure to high light is a common occurrence for many near-shore and estuarine phytoplankton. Rapid acclimatization to shifts in light may provide an axis by which some species of phytoplankton can outcompete other microalgae. Patterns of photoacclimation and photosynthetic capacity in the raphidophyte Heterosigma akashiwo (Hada) Hada ex Hara et Chihara isolated from the mid-Atlantic of the United States were followed in continuous cultures at low- and high-light intensities, followed by reciprocal shifts to the opposite light level. The maximum quantum yield (Fv /Fm ) as well as the photosynthetic cross-section (σPSII ) of photosystem II was higher in high-light cultures compared to low-light cultures. Significant diurnal variability in photochemistry and photoprotection was noted at both light levels, and high-light-acclimated cultures displayed greater variability in photoprotective pathways. When shifted from low to high light, there was only a slight and temporary decline in maximum quantum yield, while cell specific growth more than doubled within 24 h. Rapid acclimation to high light was facilitated by short-term photoprotection (nonphotochemical quenching), reduced PSII reaction center connectivity, and electron transport. Short-term increases in de-epoxidated xanthophyll pigments contributed to nonphotochemical protection, but lagged behind initial increases in nonphotochemical quenching and were not the primary pathway of photoprotection in this alga. By 48 h, photochemistry of cultures shifted from low to high light resembled long-term high-light-acclimated cultures. This isolate of H. akashiwo appears well poised to exploit rapid shifts in light by using unique cellular adjustments in light harvesting and photochemistry.

9.
Glob Chang Biol ; 19(9): 2708-19, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23666812

RESUMO

Cold-water coral (CWC) reefs are recognized as ecologically and biologically significant areas that generate habitats and diversity. The interaction between hydrodynamics and CWCs has been well studied at the Mingulay Reef Complex, a relatively shallow area of reefs found on the continental shelf off Scotland, UK. Within 'Mingulay Area 01' a rapid tidal downwelling of surface waters, brought about as an internal wave, is known to supply warmer, phytoplankton-rich waters to corals growing on the northern flank of an east-west trending seabed ridge. This study shows that this tidal downwelling also causes short-term perturbations in the inorganic carbon (CT ) and nutrient dynamics through the water column and immediately above the reef. Over a 14 h period, corresponding to one semi-diurnal tidal cycle, seawater pH overlying the reef varied by ca. 0.1 pH unit, while pCO2 shifted by >60 µatm, a shift equivalent to a ca. 25 year jump into the future, with respect to atmospheric pCO2 . During the summer stratified period, these downwelling events result in the reef being washed over with surface water that has higher pH, is warmer, nutrient depleted, but rich in phytoplankton-derived particles compared to the deeper waters in which the corals sit. Empirical observations, together with outputs from the European Regional Shelf Sea Ecosystem Model, demonstrate that the variability that the CWC reefs experience changes through the seasons and into the future. Hence, as ocean acidification and warming increase into the future, the downwelling event specific to this site could provide short-term amelioration of corrosive conditions at certain times of the year; however, it could additionally result in enhanced detrimental impacts of warming on CWCs. Natural variability in the CT and nutrient conditions, as well as local hydrodynamic regimes, must be accounted for in any future predictions concerning the responses of marine ecosystems to climate change.


Assuntos
Ácidos/análise , Antozoários/metabolismo , Temperatura , Ondas de Maré , Animais , Antozoários/química , Recifes de Corais , Oceanos e Mares , Cloreto de Sódio/análise
10.
J Phycol ; 44(4): 948-56, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27041613

RESUMO

Occurrences whereby cnidaria lose their symbiotic dinoflagellate microalgae (Symbiodinium spp.) are increasing in frequency and intensity. These so-called bleaching events are most often related to an increase in water temperature, which is thought to limit certain Symbiodinium phylotypes from effectively dissipating absorbed excitation energy that is otherwise used for photochemistry. Here, we examined photosynthetic characteristics and hydrogen peroxide (H2 O2 ) production, a possible signal involved in bleaching, from two Symbiodinium types (a thermally "tolerant" A1 and "sensitive" B1) representative of cnidaria-Symbiodinium symbioses of reef-building Caribbean corals. Under steady-state growth at 26°C, a higher efficiency of PSII photochemistry, rate of electron turnover, and rate of O2 production were observed for type A1 than for B1. The two types responded very differently to a period of elevated temperature (32°C): type A1 increased light-driven O2 consumption but not the amount of H2 O2 produced; in contrast, type B1 increased the amount of H2 O2 produced without an increase in light-driven O2 consumption. Therefore, our results are consistent with previous suggestions that the thermal tolerance of Symbiodinium is related to adaptive constraints associated with photosynthesis and that sensitive phylotypes are more prone to H2 O2 production. Understanding these adaptive differences in the genus Symbiodinium will be crucial if we are to interpret the response of symbiotic associations, including reef-building corals, to environmental change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA