Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 29(2): 521-539, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33188937

RESUMO

Oligonucleotide therapeutics are a novel promising class of drugs designed to specifically target either coding or non-coding RNA molecules to revolutionize treatment of various diseases. During preclinical development, investigations of the pharmacokinetic characteristics of these oligonucleotide-based drug candidates are essential. Oligonucleotides possess a long history of chemical modifications to enhance their stability and binding affinity, as well as reducing toxicity. Phosphorothioate backbone modifications of oligonucleotides were a hallmark of this development process that greatly enhanced plasma stability and protein binding of these agents. Modifications such as 2'-O-methylation further improved stability, while other modifications of the ribose, such as locked nucleic acid (LNA) modification, significantly increased binding affinity, potency, and tissue half-life. These attributes render oligonucleotide therapeutics able to regulate protein expression in both directions depending on the target RNA. Thus, a growing interest has emerged using these oligonucleotides in the treatment of neurodegenerative and cardiac disorders as well as cancer, since the deregulation of certain coding and non-coding RNAs plays a key role in the development of these diseases. Cutting edge research is being performed in the field of non-coding RNAs, identifying potential therapeutic targets, and developing novel oligonucleotide-based agents that outperform classical drugs. Some of these agents are either in clinical trials showing promising results or are already US Food and Drug Administration (FDA) approved, with more oligonucleotides being developed for therapeutic purposes. This is the advent of mechanism-based next-generation therapeutics for a wide range of diseases.


Assuntos
Terapia Genética , Ácidos Nucleicos/farmacocinética , Ácidos Nucleicos/uso terapêutico , Animais , Estudos Clínicos como Assunto , Ensaios Clínicos como Assunto , Aprovação de Drogas , Desenvolvimento de Medicamentos , Terapia Genética/métodos , Humanos , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration
2.
Front Pharmacol ; 11: 220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269522

RESUMO

Cardiac diseases are the most frequent causes of death in industrialized countries. Pathological remodeling of the heart muscle is caused by several etiologies such as prolonged hypertension or injuries that can lead to myocardial infarction and in serious cases also the death of the patient. The micro-RNA miR-132 has been identified as a master-switch in the development of cardiac hypertrophy and adverse remodeling. In this study, MALDI-TOF mass spectrometry (MS) was utilized to establish a robust and fast method to sensitively detect and accurately quantify anti-microRNA (antimiR) oligonucleotides in blood plasma. An antimiR oligonucleotide isolation protocol containing an ethanol precipitation step with glycogen as oligonucleotide carrier as well as a robust and reproducible MS-analysis procedure has been established. Proteinase K treatment was crucial for releasing antimiR oligonucleotides from plasma- as well as cellular proteins and reducing background derived from biological matrices. AntimiR oligonucleotide detection was achieved from samples of studies in different animal models such as mouse and pig where locked nucleic acids-(LNA)-modified antimiR oligonucleotides have been used to generate pharmacokinetic data.

3.
Mol Ther Nucleic Acids ; 18: 259-268, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31581050

RESUMO

Besides the acquisition of pharmacokinetic parameters of antisense oligonucleotide microRNA (miRNA) inhibitors, such as measuring in vivo concentration, their pharmacodynamic characteristics are also of interest. An emerging and straightforward method for studying molecular interactions is microscale thermophoresis (MST). This technique makes it possible to study interactions between miRNAs and various oligonucleotide inhibitors, independent of the chemical modifications of the inhibitors or their respective target structure, with very little sample volume required compared to competitive techniques, such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Interaction studies between these inhibitors and their respective target structures were performed, and they allowed the assessment of binding characteristics and parameters, such as EC50 for a number of these inhibitors, with little effort. Furthermore, MST could be utilized for obtaining kinetic binding data of the Argonaute-2 protein with a miRNA, which showed a possible RNA-induced silencing complex (RISC)-mediated turnover of inhibited miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA