Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theriogenology ; 47(5): 1009-18, 1997 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16728051

RESUMO

The objectives of the present study were to determine if follicular activity was less in old than in young mares during the spring transition and if green pasture would hasten onset of the ovulatory season. Experiments were conducted over 2 sequential years using young mares (3 to 7 yr) and old mares (> or =14 yr). In Experiment 1, growth of the largest and second-largest follicles were compared for young mares (5 to 7 yr) and old mares (> or =14 yr) for 21 d prior to the first ovulation of the year. More follicular activity was noted in young than in old mares. Main effect of age was significant for diameter of the largest follicle, and interaction of day-by-age was significant for diameter of the second-largest follicle. Prior to the beginning of the breeding season, the mares were randomly divided into dry-lot and pasture groups. The interval from May 2 to ovulation was shorter (P < 0.005) for mares put on pasture on May 2 than for mares kept in dry lot (means +/- SEM, 14.5 +/- 2.7 and 21.3 +/- 3.2 d, respectively). In Experiment 2, follicular activity was compared among 3 age groups (3 to 7, 17 to 19, and > or =20 yr). The total number of follicles > or =10 mm was higher (P < 0.05) for young mares and lower (P < 0.05) for old mares than for mares of an intermediate age. Main effect of age and interaction of day-by-age were significant for diameter of largest and second-largest follicles, being smaller for mares > or =20 yr than for younger mares. The interval from development of a follicle > or =30 mm to ovulation was shorter (P < 0.05) for mares placed on pasture when a > or =30 mm follicle developed than the interval for mares kept in dry lot (5.7 +/- 0.7 and 8.2 +/- 0.9 d, respectively). In summary, less follicular activity occurred in old than in young mares during the transitional period, and mares pastured on green grass ovulated sooner in the spring than mares housed on dry lot and fed hay.

2.
Theriogenology ; 29(5): 1055-63, 1988.
Artigo em Inglês | MEDLINE | ID: mdl-16726427

RESUMO

Embryo transfer into ovariectomized steroid-treated mares was used as a model to evaluate various progestin/estradiol treatments and to determine the level of progesterone necessary for the maintenance of pregnancy in mares. Once a donor mare was in estrus and had a >/=35 mm follicle, an ovariectomized recipient was selected and assigned to one of three groups: 1) 1 mg estradiol (E(2)) was injected subcutaneously daily until the donor mare ovulated; on the day of the donor mare's ovulation, daily intramuscular injections of 300 mg progesterone (P4) were commenced and continued until the end of the experiment (Day 35); 2) E(2) and P4 treatments were identical except E(2) was continued daily until Day 20; and 3) The same E(2) treatment as Group 1, 0.044 mg altrenogest per kilogram body weight were administered daily until Day 35. Embryos were recovered 7 d after the donor mare's ovulation and were transferred via surgical flank incision. Twenty additional embryos (controls) were transferred into intact recipients that ovulated 1 d before to 3 d after the donor. Pregnancy rates did not differ (P>0.05) among groups at Days 14 or 35. Pregnancy rates at Day 35 for mares administered injectable P4 (70%) were identical to those given altrenogest. Overall, pregnancy rates for ovariectomized-progestin treated recipients (28 of 40, 70%) were similar (>0.05) to that of intact mares (16 of 20, 80%). Dose of P4 was decreased in Groups 1 and 2 to 200 mg (Days 35 to 39), 100 mg (Days 40 to 44), 50 mg (Days 45 to 49) and 0 mg (>/=Day 50). Blood samples were collected once on Days 34, 35, 39, 40, 44, 45, 49 and 50 and assayed for P4. Dose of altrenogest was decreased to 0.022, 0.011, 0.0055 and 0 mg per kilogram body weight at Days 35 to 39, 40 to 44, 45 to 49 and >/=50. Number of mares in Groups 1 and 2 that lost their pregnancy while given 200, 100, 50 or 0 mg P4 was 0, 2, 8 and 4, respectively. Doses of 0.022, 0.011, 0.0055 and 0 mg altrenogest per kilogram body weight resulted in 0, 6, 4 and 3 mares aborting. Fetal death did not occur until concentrations of P4 decreased below 2.56 ng/ml 24 h after injection.

3.
Gamete Res ; 21(3): 233-41, 1988 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-3073116

RESUMO

Transmission electron microscopy was used to confirm that a monoclonal antibody (F79.3E2; class IgG1 kappa) was specifically localized to an antigen in the acrosomal ground substance of stallion sperm. This antibody was used to develop and validate an indirect immunofluorescent procedure to evaluate integrity of the plasma-acrosomal membranes of stallion sperm. The concept was that primary monoclonal antibody would be "shielded" from its acrosomal antigen by an intact plasma membrane. Conversely, sperm with damaged plasma-acrosomal membranes would exhibit green acrosomal fluorescence when viewed with an epifluorescence microscope. A lipophilic counterstain (red fluorescence) was used to insure that all sperm were visualized. Sperm in fresh-extended or frozen-thawed semen were incubated with hybridoma supernatant containing monoclonal antibody for 30 min at 37 degrees C, then a second antibody (rabbit anti-mouse IgG-FITC) was added for 30 min at 37 degrees C. Unbound antibody was removed by dilution and centrifugation. Sperm were resuspended in phosphate-buffered saline containing Evan's blue as a counterstain. All sperm fluoresced bright red, regardless of the status of cell membranes, except that in cells with damaged plasma-acrosomal membranes, the green fluorescence associated with antibody was overriding for the rostral portion. By counting fluorescent and nonfluorescent "acrosomes", the percentage of sperm with intact plasma-acrosomal membranes was easily determined. Evaluation of five mixtures of undamaged and damaged sperm by this procedure gave a correlation of 0.91 between the percentage of damaged sperm in a mixture and the percentage of sperm with a fluorescent acrosome. Intra- and interassay coefficients of variability were less than 6%.


Assuntos
Acrossomo/patologia , Espermatozoides/patologia , Acrossomo/imunologia , Animais , Anticorpos Monoclonais , Gatos , Bovinos , Membrana Celular/imunologia , Membrana Celular/patologia , Cães , Imunofluorescência , Cavalos , Masculino , Microscopia Eletrônica , Coelhos , Ratos , Ovinos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA