Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(9): 2345-2348, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126270

RESUMO

In this Letter, a simple structure formed by a metallic thin layer covering a high-index substrate is used to design an optical tweezer. Owing to the interaction between the field scattered by the particle with an incident plane wave and the proposed structure, a pulling or attractive component of the optical force emerges. This component results in enhancement thanks to the surface plasmons (SPs) excitation arising from the elliptical polarization of the induced dipole moment on the particle. To further exploit the versatility of the proposed approach, we analyze two basic configurations: the reflection scheme, for which the plane wave impinges from the side where the particle is placed; and the transmission scheme, for which the incidence is made from the substrate side. Our results show that the intensity of the pulling force in the reflection scheme and for finite thickness metal layer reaches values exceeding more than twice those provided by a single metallic interface. We also demonstrate that the transmission scheme is more favorable than the reflection scheme for enhancing pulling force intensities. Our contribution can be valuable for realizing simple plasmonic schemes for improving the pulling force via interactions between the nano-particle and SP fields.

2.
Phys Chem Chem Phys ; 23(13): 8002-8012, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480905

RESUMO

The excitation functions (reaction cross-section as a function of collision energy) of the F + HD(v = 0, 1; j = 0, 1) benchmark system have been calculated in the 0.01-6 meV collision energy interval using a time-independent hyperspherical quantum dynamics methodology. Special attention has been paid to orbiting resonances, which bring about detailed information on the three-atom interaction during the reactive encounter. The location of the resonances depends on the rovibrational state of the reactants HD(v,j), but is the same for the two product channels HF + D and DF + H, as expected for these resonances that are linked to the van der Waals well at the entrance. The resonance intensities depend both on the entrance and on the exit channels. The peak intensities for the HF + D channel are systematically larger than those for DF + H. Vibrational excitation leads to an increase of the peak intensity by more than an order of magnitude, but rotational excitation has a less drastic effect. It deceases the resonance intensity of the F + HD(v = 1) reaction, but increases somewhat that of F + HD(v = 0). Polarization of the rotational angular momentum with respect to the initial velocity reveals intrinsic directional preferences in the F + HD(v = 0, 1; j = 1) reactions that are manifested in the resonance patterns. The helicities (Ω = 0, Ω = ±1) possible for j = 1 contribute to the resonances, but that from Ω± 1 is, in general, dominant and in some cases exclusive. It corresponds to a preferential alignment of the HD internuclear axis perpendicular to the initial direction of approach and, thus, to side-on collisions. This work also shows that external preparation of the reactants, following the intrinsic preferences, would allow the enhancement or reduction of specific resonance features, and would be of great help for their eventual experimental detection.

3.
Extremophiles ; 24(3): 433-446, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32296946

RESUMO

Glutamine synthetase is an essential enzyme in ammonium assimilation and glutamine biosynthesis. The Haloferax mediterranei genome has two other glnA-type genes (glnA2 and glnA3) in addition to the glutamine synthetase gene glnA. To determine whether the glnA2 and glnA3 genes can replace glnA in nitrogen metabolism, we generated deletion mutants of glnA. The glnA deletion mutants could not be generated in a medium without glutamine, and thus, glnA is an essential gene in H. mediterranei. The glnA deletion mutant was achieved by adding 40 mM glutamine to the selective medium. This conditional HM26-ΔglnA mutant was characterised with different approaches in the presence of distinct nitrogen sources and nitrogen starvation. Transcriptomic analysis was performed to compare the expression profiles of the strains HM26-ΔglnA and HM26 under different growth conditions. The glnA deletion did not affect the expression of glnA2, glnA3 and nitrogen assimilation genes under nitrogen starvation. Moreover, the results showed that glnA, glnA2 and glnA3 were not expressed under the same conditions. These results indicated that glnA is an essential gene for H. mediterranei and, therefore, glnA2 and glnA3 cannot replace glnA in the conditions analysed.


Assuntos
Haloferax mediterranei , Conversão Gênica , Glutamato-Amônia Ligase , Glutamina
4.
Phys Chem Chem Phys ; 21(27): 15177-15186, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246200

RESUMO

Time-independent, fully converged, quantum dynamical calculations have been performed for the F + HD (v = 0, j = 0) and F + HD (v = 1, j = 0) reactions on an accurate potential energy surface down to collision energies of 0.01 meV. The two isotopic exit channels, HF + D and DF + H, have been investigated. The calculations reproduce satisfactorily the Feshbach resonance structures for collision energies between 10 and 40 meV, previously reported in the literature for the HF + D channel. Contrary to the results of a former literature work, vibrational excitation of HD is found to enhance reactivity in all cases down to the lowest collision energy investigated. Shape-type orbiting resonances are found for collision energies lower than 2 meV. The resonances appear as peaks in the reaction cross sections that are associated to specific values of the total angular momentum, J. In contrast with the Feshbach resonances at higher energies, the orbiting resonance structure, which is caused by the van der Waals well of the entrance channel, is identical for the HF + D and DF + H exit channels. The orbiting resonance peaks for F + HD (v = 0) are very small, but those for F + HD (v = 1) could be observed, in principle, with a combination of Raman pumping and merged beams methods.

5.
Phys Chem Chem Phys ; 21(45): 25389-25396, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31709441

RESUMO

One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A' and A'' that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the 3A' PES than on the 3A'' PES. Accordingly, the reactivity on the 3A'' PES should be always higher than on the 3A' PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the 3A' PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.

6.
Pharmazie ; 74(1): 34-38, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782248

RESUMO

Decontamination of patients' clinical devices in intensive care units is generally performed with an antifungal suspension. Nystatin is a widely-used high spectrum antifungal due to its low systemic absorption. However, nystatin has high hydrophobicity which hinders the contact with the internal lumen of the devices. In this work, hydrophilic micellar systems of nystatin were developed with sodium deoxycholate on silicone endotracheal tubes. The physical characteristics of the micellar system at different nystatin:deoxycholate ratios were studied using scanning electron microscopy, X-ray powder diffraction and differential scanning calorimetry. The electron microscopy results reveal that the deoxycholate micellar system altered the surface morphology, and the size of the aggregates was observed to be smaller. The hydrophilic structures of deoxycholate produce systems with a high surface area containing nystatin molecules on their interior. The X-ray and differential scanning calorimetry assays revealed a typical change in the crystallinity of micellar systems when the deoxycholate proportion increases. The endothermic peak of nystatin was not observed in the micellar systems as a consequence of the reduced crystallinity. Nystatin was homogenously dispersed in the surfactant matrix. Micellar systems with 1:0.8 nystatin:deoxycholate ratio (MS-N:DC [1:0.8]) showed increased antifungal activity compared to nystatin raw material. Micellar systems also achieved an over 40% inhibition of Candida albicans biofilm formation. The results obtained in this study conclude that the higher hydrophilic characteristic of the surfactant deoxycholate enhances nystatin penetration into the surface of the endotracheal tubes.


Assuntos
Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Ácido Desoxicólico/química , Nistatina/administração & dosagem , Antifúngicos/química , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Intubação Intratraqueal/instrumentação , Micelas , Microscopia Eletrônica de Varredura , Nistatina/química , Nistatina/farmacologia , Silicones/química , Tensoativos/química , Difração de Raios X
7.
Phys Rev Lett ; 120(13): 132504, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694208

RESUMO

A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2 nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

8.
Phys Chem Chem Phys ; 18(19): 13530-7, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27138743

RESUMO

The dynamics of the D + MuH(v = 1) reaction has been investigated using time-independent quantum mechanical calculations. The total reaction cross sections and rate coefficients have been calculated for the two exit channels of the reaction leading, respectively, to DMu + H and DH + Mu. Over the 100-1000 K temperature range investigated the rate coefficients for the DMu + H channel are of the order of 10(-10) cm(3) s(-1) and those for the DH + Mu channel vary between 1 × 10(-12) and 8 × 10(-11) cm(3) s(-1). These results point to a virtually barrierless reaction for the DMu + H channel and to the presence of a comparatively small barrier for the DH + Mu channel and are consistent with the profiles of their respective collinear vibrationally adiabatic potentials (VAPs). The effective barrier in the VAP of the DH + Mu channel is located in the reactant valley and, consequently, translation is found to be more efficient than vibration for the promotion of the reaction over a large energy interval in the post threshold region. Below this barrier, the DH + Mu channel can be accessible through an indirect mechanism implying crossing from the DMu + H pathway. The most salient feature found in the present study is revealed in the total reaction cross section for the DMu + H channel, which shows a sharp resonance caused by the presence of a deep well in the vibrationally adiabatic potential. This well has a dynamical origin, reminiscent of that found recently in the vibrationally bonded BrMuBr complex [Fleming, et al., Angew. Chem., Int. Ed., 2014, 53, 1], and is due to the stabilizing effect of the light Mu atom oscillating between the heavier H and D isotopes and to the bond softening associated with vibrational excitation of MuH.

9.
J Phys Chem A ; 119(50): 12245-54, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26305719

RESUMO

We have analyzed the influence of the rotational excitation on the H + D2(v = 0, j) reaction through quantum mechanical (QM) and quasiclassical trajectories (QCT) calculations at a wide range of total energies. The agreement between both types of calculations is excellent. We have found that the rotational excitation largely increases the reactivity at large values of the total energy. Such an increase cannot be attributed to a stereodynamical effect but to the existence of recrossing trajectories that become reactive as the target molecule gets rotationally excited. At low total energies, however, recrossing is not significant and the reactivity evolution is dominated by changes in the collision energy; the reactivity decreases with the collision energy as it shrinks the acceptance cone. When state-to-state results are considered, rotational excitation leads to cold product's rovibrational distributions, so that most of the energy is released as recoil energy.

10.
Phys Chem Chem Phys ; 16(21): 9808-18, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24366414

RESUMO

The dynamics of the asymmetric D + MuH (Mu = Muonium) reaction leading to Mu exchange, DMu + H, and H abstraction, DH + Mu, channels has been investigated using time-independent quantum mechanical (QM) calculations. Reaction probabilities, cross sections, cumulative reaction probabilities, and rate coefficients were determined for the two exit channels of the reaction. Quasiclassical trajectory (QCT) calculations were also performed in order to check the reliability of the method for this reaction and to discern the genuine quantum effects. Overall, the Mu exchange channel exhibits more structured reaction probabilities and cross sections with much larger rate coefficients than the H abstraction counterpart. Over the 100-1000 K temperature interval considered in this study, the QM rate coefficients for the Mu exchange vary between ≈5 × 10(-15) and 2 × 10(-11) cm(3) s(-1) and those for the generation of DH + Mu between 2 × 10(-18) and 3.5 × 10(-12) cm(3) s(-1). In common with the rest of the isotopologues of the H + H2 system, the height of the respective barriers in the collinear (symmetric stretch) vibrationally adiabatic potential energy curves matches the classical total energy threshold very accurately. Indeed, the lower and narrower vibrationally adiabatic collinear barrier as compared with that for the DH + Mu formation determines the preponderance of the DMu + H channel. Comparison of QM and QCT results and their analysis show that tunneling accounts for the reactivity at energies below the height of these barriers and that its effect on the rate coefficients becomes appreciable below 300 K. As expected, with growing temperature the contribution of tunneling to the global reactivity decreases markedly, but the rate coefficients are still much higher for the Mu exchange channel due to the effect of MuH rotational excitation that boosts the formation of DMu while diminishing the H abstraction channel that leads to DH formation. The analysis of the thermal cumulative reaction probabilities of the two channels indicates that at the lowest energies/temperatures the reaction into the DH + Mu channel takes place via'leakage' from collisions proceeding along the DMu + H reaction path.

11.
Phys Chem Chem Phys ; 16(31): 16694-700, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25000136

RESUMO

The symmetric stretching vibration (breathing mode) of methane is forbidden in the infrared spectra of gases. However, it has been observed in the spectra of low-pressure ice mixtures of methane and water, studied as models for astronomical ices. We investigate the possible origin of the activation of this mode by means of solid state calculations of amorphous water (ASW) samples into which methane molecules are introduced. Activation is predicted either by the interaction of the CH4 and H2O molecules in pore walls or via a strong mode coupling that takes place between the breathing mode of CH4 and the O-H stretching mode of H2O when both vibrations coincide in frequency. These two mechanisms would be favored for low-density or high density ASW, respectively. A possible experimental observation of this activation in compact ASW is discussed.

12.
J Phys Chem A ; 117(39): 9564-73, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23360125

RESUMO

Cyanate and bicarbonate are two ions that play active roles in many fields of physics and chemistry, including biological sciences and astrochemistry. We present here a comprehensive study of these species covering a range of phases and methodologies. We have performed theoretical calculations on the isolated ions and their hydrates with one to four water molecules, and in clusters with 15 water molecules. The predicted infrared spectra are compared with observed spectra from experiments where liquid droplets of their solutions are frozen at 14 K on a substrate, to mimic some astrophysical conditions. Crystals of cyanate and bicarbonate sodium and potassium salts are also studied experimental and theoretically. As well, the spontaneous decomposition of cyanate into bicarbonate is documented from the spectra of an aged solution. Finally, the possible astrophysical observation of bicarbonate in water-containing particles is discussed.

13.
Phys Chem Chem Phys ; 14(42): 14596-604, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23019575

RESUMO

Quantum mechanical (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the exchange reactions of D and Mu (Mu = muonium) with hydrogen molecules in their ground and first vibrational states. In all the cases considered, the QM rate coefficients, k(T), are in very good agreement with the available experimental results. In particular, QM calculations on the most accurate potential energy surfaces (PESs) predict a rate coefficient for the Mu + H(2) (ν = 1) reaction which is very close to the preliminary estimate of its experimental value at 300 K. In contrast to the D + H(2) (ν = 0,1) and the Mu + H(2) (ν = 0) reactions, the QCT calculations for Mu + H(2) (ν = 1) predict a much smaller k(T) than that obtained with the accurate QM method. This behaviour is indicative of tunneling. The QM reaction probabilities and total reactive cross sections show that the total energy thresholds for the reactions of Mu with H(2) in ν = 0 and ν = 1 are very similar, whereas for the corresponding reaction with D the ν = 0 total energy threshold is about 0.3 eV lower than that for ν = 1. The results just mentioned can be explained by considering the vibrational adiabatic potentials along the minimum energy path. The threshold for the reaction of Mu with H(2) in both ν = 0 and ν = 1 states is the same and is given by the height of the ground vibrational adiabatic collinear potential, whereas for the D + H(2) reaction the adiabaticity is preserved and the threshold for the reaction in ν = 1 is very close to the height of the ν = 1 adiabatic collinear barrier. For Mu + H(2) (ν = 1) the reaction takes place by crossing from the ν = 1 to the ν = 0 adiabat, since the exit channel leading to MuH (ν = 1) is not energetically accessible. At the lowest possible energies, the non-adiabatic vibrational crossing implies a strong tunneling effect through the ν = 1 adiabatic barrier. Absence of tunneling in the classical calculations results in a threshold that coincides with the height of the ν = 1 adiabatic barrier. Most interestingly, the expected tunneling effect in the reaction of Mu with hydrogen molecules occurs for H(2) (ν = 1) but not for H(2) (ν = 0) where zero-point-energy effects clearly dominate.

14.
Phys Chem Chem Phys ; 14(10): 3346-59, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22297467

RESUMO

An extensive set of experimental measurements on the dynamics of the H(+) + D(2) and D(+) + H(2) ion-molecule reactions is compared with the results of quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical quasiclassical trajectory (SQCT) calculations. The dynamical observables considered include specific rate coefficients as a function of the translational energy, E(T), thermal rate coefficients in the 100-500 K temperature range. In addition, kinetic energy spectra (KES) of the D(+) ions reactively scattered in H(+) + D(2) collisions are also presented for translational energies between 0.4 eV and 2.0 eV. For the two reactions, the best global agreement between experiment and theory over the whole energy range corresponds to the QCT calculations using a gaussian binning (GB) procedure, which gives more weight to trajectories whose product vibrational action is closer to the actual integer QM values. The QM calculations also perform well, although somewhat worse over the more limited range of translational energies where they are available (E(T) < 0.6 eV and E(T) < 0.2 eV for the H(+) + D(2) and D(+) + H(2) reactions, respectively). The worst agreement is obtained with the SQCT method, which is only adequate for low translational energies. The comparison between theory and experiment also suggests that the most reliable rate coefficient measurements are those obtained with the merged beams technique. It is worth noting that none of the theoretical approaches can account satisfactorily for the experimental specific rate coefficients of H(+) + D(2) for E(T)≤ 0.2 eV although there is a considerable scatter in the existing measurements. On the whole, the best agreement with the experimental laboratory KES is obtained with the simulations carried out using the state resolved differential cross sections (DCSs) calculated with the QCT-GB method, which seems to account for most of the observed features. In contrast, the simulations with the SQCT data predict kinetic energy spectra (KES) considerably cooler than those experimentally determined.

15.
Sci Rep ; 12(1): 6170, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418700

RESUMO

An experiment is conducted in a rectangular channel obstructed by a transverse line of four inclined cylindrical rods. The pressure on the surface of a central rod and the pressure drop through the channel are measured varying the inclination angle of the rods. Three assemblies of rods with different diameters are tested. The measurements were analyzed applying momentum conservation principles and semi-empirical considerations. Several invariant dimensionless groups of parameters relating the pressure at key locations of the system with characteristic dimensions of the rods are produced. It was found that the independence principle holds for most of the Euler numbers characterizing the pressure at different locations, that is, the group is independent of the inclination angle provided that the inlet velocity projection normal to the rods is used to non-dimensionalize the pressure. The resulting semi-empirical correlations can be useful for designing similar hydraulic units.


Assuntos
Movimento (Física)
16.
J Phys Chem A ; 115(1): 70-5, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21142108

RESUMO

The formate anion HCOO(-) is present in a multitude of systems of relevance, and it is characterized by its plasticity, adopting several different structures. This work provides a theoretical study of the ion focused on two of these structures, a crystal and an isolated species. Crystals of sodium formate and ammonium formate are studied using CASTEP, a solid-oriented computing package. Individual molecules of the same systems and of the formate and ammonium ions are also studied, using the Gaussian code at the MP2/aug-cc-pvTZ level. All theoretical calculations are contrasted by comparison to observed infrared spectra, recorded by using different techniques. In addition, a topological analysis of the bonding properties of the isolated molecules is presented.


Assuntos
Formiatos/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho
17.
Actas Dermosifiliogr (Engl Ed) ; 111(6): 513-517, 2020.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32401725

RESUMO

BACKGROUND AND OBJECTIVE: Atopic dermatitis affects a patient's quality of life in many ways. Analysis of the effects of this disease on the lives of adult patients is therefore important for the purpose of better defining their care needs. PATIENTS AND METHODS: We interviewed 14 adult patients with atopic dermatitis in this qualitative study. The interviews were semistructured according to a simple outline to allow for completeness and flexibility and afford greater depth and richness of information. RESULTS: Atopic dermatitis affected the patients' lives in 6 spheres of activity: economic, occupational, personal, psychosocial, clinical, and relational. A clear finding was that the disease has a considerable psychosocial effect on adult patients, altering their interpersonal relationships and leading to rejection, stigmatization, and social isolation. It limits the patient in various spheres of life and in activities of daily living, causing sleep alterations among other effects. The patients were very concerned about appearance, the itch-scratch cycle, poor understanding and lack of awareness of their disease, the absence of a definitive treatment, and the adverse effects of some treatments. CONCLUSIONS: The quality of life of adults with atopic dermatitis is negatively affected. This disease requires a professional, holistic, multidisciplinary management approach that attempts to mitigate the adverse effects.


Assuntos
Dermatite Atópica , Eczema , Atividades Cotidianas , Adulto , Humanos , Prurido , Qualidade de Vida
18.
Science ; 269(5221): 207-10, 1995 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-17789848

RESUMO

The H + H(2) exchange reaction constitutes an excellent benchmark with which to test dynamical theories against experiments. The H + D(2) (vibrational quantum number v = 0, rotational quantum number j = 0) reaction has been studied in crossed molecular beams at a collision energy of 1.28 electron volts, with the use of the technique of Rydberg atom time-of-flight spectroscopy. The experimental resolution achieved permits the determination of fully rovibrational state-resolved differential cross sections. The high-resolution data allow a detailed assessment of the applicability and quality of quasi-classical trajectory (QCT) and quantum mechanical (QM) calculations. The experimental results are in excellent agreement with the QM results and in slightly worse agreement with the QCT results. This theoretical reproduction of the experimental data was achieved without explicit consideration of geometric phase effects.

19.
J Chem Phys ; 130(18): 184303, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19449917

RESUMO

Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H(+) + H(2) and H(+) + D(2) reactions at collision energies up to 1.2 eV and total angular momentum J = 0-4. A marked resonance structure is found in the QM CRP, most especially for the H(3)(+) system and J = 0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H(+) + D(2) isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H(+) + D(2) reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by the dynamical and statistical trajectory methods.

20.
Astron Astrophys ; 6292019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31485081

RESUMO

CONTEXT: Dinitriles with a saturated hydrocarbon skeleton and a -C≡N group at each end can have large electric dipole moments. Their formation can be related to highly reactive radicals such as CH2CN, C2N or CN. Thus, these saturated dinitriles are potential candidates to be observed in the ISM. AIMS: Our goal is the investigation of the rotational spectrum of one of the simplest dinitriles N≡C-CH2-CH2-C≡N, succinonitrile, whose actual rotational parameters are not precise enough to allow its detection in the ISM. In addition, the rotational spectra for its vibrational exicted states will be analyzed. METHODS: The rotational spectra of succinonitrile was measured in the frequency range 72-116.5 GHz using a new broadband millimeter-wave spectrometer based on radio astronomy receivers with Fast Fourier Transform backends. The identification of the vibrational excited states of succinonitrile was supported by high-level ab initio calculations on the harmonic and anharmonic force fields. RESULTS: A total of 459 rotational transitions with maximum values of J and Ka quantum numbers 70 and 14, respectively, were measured for the ground vibrational state of succinonitrile. The analysis allowed us to accurately determine the rotational, quartic and sextic centrifugal distortion constants. Up to eleven vibrational excited states, resulting from the four lowest frequency vibrational modes ν 13, ν 12, ν 24 and ν 23 were identified. In addition to the four fundamental modes, we observed overtones together with some combination states. The rotational parameters for the ground state were employed to unsuccessfully search for succinonitrile in the cold and warm molecular clouds Orion KL, Sgr B2(N), B1-b and TMC-1, using the spectral surveys captured by IRAM 30m at 3mm and the Yebes 40m at 1.3cm and 7mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA