Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 47(10): 839-850, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927139

RESUMO

Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.


Assuntos
Aminoácidos , Plantas , Aminoácidos/metabolismo , Plantas/metabolismo , Transdução de Sinais
2.
J Exp Bot ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686677

RESUMO

During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analyzed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.

3.
Chembiochem ; 24(10): e202300056, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36853993

RESUMO

Plants of the genus Allium such as chives, onions or garlic produce S-alk(en)yl cysteine sulfoxides as flavor precursors. Two major representatives are S-propenyl cysteine sulfoxide (isoalliin) and S-propyl cysteine sulfoxide (propiin), which only differ by a double bond in the C3 side chain. The propenyl group of isoalliin is derived from the amino acid valine, but the source of the propyl group of propiin remains unclear. Here, we present an untargeted metabolomics approach in seedlings of chives (Allium schoenoprasum) to track mass features containing sulfur and/or 13 C from labeling experiments with valine-13 C5 guided by their isotope signatures. Our data show that propiin and related propyl-bearing metabolites incorporate carbon derived from valine-13 C5 , but to a much lesser extent than isoalliin and related propenyl compounds. Our findings provide new insights into the biosynthetic pathways of flavor precursors in Allium species and open new avenues for future untargeted labeling experiments.


Assuntos
Allium , Cebolinha-Francesa , Cebolinha-Francesa/metabolismo , Cisteína/química , Valina , Allium/química , Allium/metabolismo , Sulfóxidos/química
5.
Plant Physiol ; 185(2): 385-404, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721903

RESUMO

During drought stress, cellular proteostasis on the one hand and amino acid homeostasis on the other hand are severely challenged, because the decrease in photosynthesis induces massive proteolysis, leading to drastic changes in both the proteome and the free amino acid pool. Thus, we selected progressive drought stress in Arabidopsis (Arabidopsis thaliana) as a model to investigate on a quantitative level the balance between protein and free amino acid homeostasis. We analyzed the mass composition of the leaf proteome based on proteomics datasets, and estimated how many protein molecules are present in a plant cell and its subcellular compartments. In addition, we calculated stress-induced changes in the distribution of individual amino acids between the free and protein-bound pools. Under control conditions, an average Arabidopsis mesophyll cell contains about 25 billion protein molecules, of which 80% are localized in chloroplasts. Severe water deficiency leads to degradation of more than 40% of the leaf protein mass, and thus causes a drastic shift in distribution toward the free amino acid pool. Stress-induced proteolysis of just half of the 340 million RubisCO hexadecamers present in the chloroplasts of a single mesophyll cell doubles the cellular content of free amino acids. A major fraction of the amino acids released from proteins is channeled into synthesis of proline, which is a compatible osmolyte. Complete oxidation of the remaining fraction as an alternative respiratory substrate can fully compensate for the lack of photosynthesis-derived carbohydrates for several hours.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteoma , Cloroplastos/metabolismo , Secas , Homeostase , Fotossíntese , Células Vegetais/fisiologia , Folhas de Planta/fisiologia , Prolina/metabolismo , Proteólise , Proteômica , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico , Água/metabolismo
6.
Plant Physiol ; 186(3): 1507-1525, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856472

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Di-Hidrolipoamida Desidrogenase/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Genes de Plantas , Variação Genética , Genótipo , Proteínas Ferro-Enxofre/genética
7.
Plant Cell Rep ; 41(2): 431-446, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35031834

RESUMO

KEY MESSAGE: The functional absence of the electron-transfer flavoprotein: ubiquinone oxidoreductase (ETFQO) directly impacts electrons donation to the mitochondrial electron transport chain under carbohydrate-limiting conditions without major impacts on the respiration of cell cultures. Alternative substrates (e.g., amino acids) can directly feed electrons into the mitochondrial electron transport chain (mETC) via the electron transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports plant respiration during stress situations. By using a cell culture system, here we investigated the responses of Arabidopsis thaliana mutants deficient in the expression of ETFQO (etfqo-1) following carbon limitation and supplied with amino acids. Our results demonstrate that isovaleryl-CoA dehydrogenase (IVDH) activity was induced during carbon limitation only in wild-type and that these changes occurred concomit with enhanced protein content. By contrast, neither the activity nor the total amount of IVDH was altered in etfqo-1 mutants. We also demonstrate that the activities of mitochondrial complexes in etfqo-1 mutants, display a similar pattern as in wild-type cells. Our findings suggest that the defect of ETFQO protein culminates with an impaired functioning of the IVDH, since no induction of IVDH activity was observed. However, the functional absence of the ETFQO seems not to cause major impacts on plant respiration under carbon limiting conditions, most likely due to other alternative electron entry pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flavoproteínas Transferidoras de Elétrons , Aminoácidos de Cadeia Ramificada/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Técnicas de Cultura de Células , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Isovaleril-CoA Desidrogenase/genética , Isovaleril-CoA Desidrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação
8.
Plant J ; 101(2): 420-441, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520498

RESUMO

Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Organelas/metabolismo , Proteômica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bases de Dados de Proteínas , Mitocôndrias/genética , Biogênese de Organelas , Organelas/genética , Proteoma/metabolismo
9.
J Exp Bot ; 72(13): 4634-4645, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33993299

RESUMO

The adaptation of plant metabolism to stress-induced energy deficiency involves profound changes in amino acid metabolism. Anabolic reactions are suppressed, whereas respiratory pathways that use amino acids as alternative substrates are activated. This review highlights recent progress in unraveling the stress-induced amino acid oxidation pathways, their regulation, and the role of amino acids as signaling molecules. We present an updated map of the degradation pathways for lysine and the branched-chain amino acids. The regulation of amino acid metabolism during energy deprivation, including the coordinated induction of several catabolic pathways, is mediated by the balance between TOR and SnRK signaling. Recent findings indicate that some amino acids might act as nutrient signals in TOR activation and thus promote a shift from catabolic to anabolic pathways. The metabolism of the sulfur-containing amino acid cysteine is highly interconnected with TOR and SnRK signaling. Mechanistic details have recently been elucidated for cysteine signaling during the abscisic acid-dependent drought response. Local cysteine synthesis triggers abscisic acid production and, in addition, cysteine degradation produces the gaseous messenger hydrogen sulfide, which promotes stomatal closure via protein persulfidation. Amino acid signaling in plants is still an emerging topic with potential for fundamental discoveries.


Assuntos
Ácido Abscísico , Transdução de Sinais , Adaptação Fisiológica , Aminoácidos , Plantas
10.
Plant Cell Environ ; 42(5): 1630-1644, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30632176

RESUMO

Plant responses to abiotic stress include various modifications in amino acid metabolism. By using a hydroponic culture system, we systematically investigate modification in amino acid profiles and the proteome of Arabidopsis thaliana leaves during initial recovery from low water potential or high salinity. Both treatments elicited oxidative stress leading to a biphasic stress response during recovery. Degradation of highly abundant proteins such as subunits of photosystems and ribosomes contributed to an accumulation of free amino acids. Catabolic pathways for several low abundant amino acids were induced indicating their usage as an alternative respiratory substrate to compensate for the decreased photosynthesis. Our results demonstrate that rapid detoxification of potentially detrimental amino acids such as Lys is a priority during the initial stress recovery period. The content of Pro, which acts as a compatible osmolyte during stress, was adjusted by balancing its synthesis and catabolism both of which were induced both during and after stress treatments. The production of amino acid derived secondary metabolites was up-regulated specifically during the recovery period, and our dataset also indicates increased synthesis rates of the precursor amino acids. Overall, our results support a tight relationship between amino acid metabolism and stress responses.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico , Proteínas de Arabidopsis/metabolismo , Desidratação , Lisina/metabolismo , Estresse Oxidativo , Folhas de Planta/metabolismo , Prolina/metabolismo , Proteoma/metabolismo , Estresse Salino
11.
Plant J ; 89(6): 1079-1092, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943495

RESUMO

Mitochondria are central to cellular metabolism and energy conversion. In plants they also enable photosynthesis through additional components and functional flexibility. A majority of those processes relies on the assembly of individual proteins to larger protein complexes, some of which operate as large molecular machines. There has been a strong interest in the makeup and function of mitochondrial protein complexes and protein-protein interactions in plants, but the experimental approaches used typically suffer from selectivity or bias. Here, we present a complexome profiling analysis for leaf mitochondria of the model plant Arabidopsis thaliana for the systematic characterization of protein assemblies. Purified organelle extracts were separated by 1D Blue native (BN) PAGE, a resulting gel lane was dissected into 70 slices (complexome fractions) and proteins in each slice were identified by label free quantitative shot-gun proteomics. Overall, 1359 unique proteins were identified, which were, on average, present in 17 complexome fractions each. Quantitative profiles of proteins along the BN gel lane were aligned by similarity, allowing us to visualize protein assemblies. The data allow re-annotating the subunit compositions of OXPHOS complexes, identifying assembly intermediates of OXPHOS complexes and assemblies of alternative respiratory oxidoreductases. Several protein complexes were discovered that have not yet been reported in plants, such as a 530 kDa Tat complex, 460 and 1000 kDa SAM complexes, a calcium ion uniporter complex (150 kDa) and several PPR protein complexes. We have set up a tailored online resource (https://complexomemap.de/at_mito_leaves) to deposit the data and to allow straightforward access and custom data analyses.


Assuntos
Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Eletroforese em Gel de Poliacrilamida , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/genética , Proteômica
12.
Plant Mol Biol ; 98(1-2): 121-135, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30143990

RESUMO

KEY MESSAGE: During abiotic stress low abundant amino acids are not synthesized but they accumulate due to increased protein turnover under conditions inducing carbohydrate starvation (dehydration, salt stress, darkness) and are degraded. Metabolic adaptation is crucial for abiotic stress resistance in plants, and accumulation of specific amino acids as well as secondary metabolites derived from amino acid metabolism has been implicated in increased tolerance to adverse environmental conditions. The role of proline, which is synthesized during Arabidopsis stress response to act as a compatible osmolyte, has been well established. However, conclusions drawn about potential functions of other amino acids such as leucine, valine, and isoleucine are not entirely consistent. This study reevaluates published datasets with a special emphasis on changes in the free amino acid pool and transcriptional regulation of the associated anabolic and catabolic pathways. In order to gain a comprehensive overview about the general direction of amino acid metabolism under abiotic stress conditions a complete map of all currently known enzymatic steps involved in amino acid synthesis and degradation was assembled including also the initial steps leading to the synthesis of secondary metabolites. Microarray datasets and amino acid profiles of Arabidopsis plants exposed to dehydration, high salinity, extended darkness, cold, and heat were systematically analyzed to identify trends in fluxes of amino acid metabolism. Some high abundant amino acids such as proline, arginine, asparagine, glutamine, and GABA are synthesized during abiotic stress to act as compatible osmolytes, precursors for secondary metabolites, or storage forms of organic nitrogen. In contrast, most of the low abundant amino acids are not synthesized but they accumulate due to increased protein turnover under conditions inducing carbohydrate starvation (dehydration, salt stress, extended darkness) and are degraded.


Assuntos
Aminoácidos/biossíntese , Aminoácidos/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico , Bases de Dados Genéticas , Regulação da Expressão Gênica , Metaboloma/genética , Metabolômica , Transcriptoma/genética
13.
Physiol Plant ; 161(4): 451-467, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28767134

RESUMO

Plant respiration mostly depends on the activity of glycolysis and the oxidation of organic acids in the tricarboxylic acid cycle to synthesize ATP. However, during stress situations plant cells also use amino acids as alternative substrates to donate electrons through the electron-transfer flavoprotein (ETF)/ETF:ubiquinone oxidoreductase (ETF/ETFQO) complex to the mitochondrial electron transport chain (mETC). Given this, we investigated changes of the oxidative phosphorylation (OXPHOS) system in Arabidopsis thaliana cell culture under carbohydrate starvation supplied with a range of amino acids. Induction of isovaleryl-CoA dehydrogenase (IVDH) activity was observed under carbohydrate starvation which was associated with increased amounts of IVDH protein detected by immunoblotting. Furthermore, activities of the protein complexes of the mETC were reduced under carbohydrate starvation. We also observed that OXPHOS system activity behavior is differently affected by different amino acids and that proteins associated with amino acids catabolism are upregulated in cells following carbohydrate starvation. Collectively, our results support the contention that ETF/ETFQO is an essential pathway to donate electrons to the mETC and that amino acids are alternative substrates to maintain respiration under carbohydrate starvation.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Fosforilação Oxidativa
14.
Plant Physiol ; 168(3): 828-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25944824

RESUMO

Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. Overall, we observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Quantitative data were also used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3',5'-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism.


Assuntos
Brassica napus/embriologia , Brassica napus/metabolismo , Análise Multinível , Óleos de Plantas/metabolismo , Sementes/embriologia , Sementes/metabolismo , Técnicas de Cultura de Tecidos/métodos , Aminoácidos/metabolismo , Biocatálise , Biomassa , Brassica napus/ultraestrutura , Metabolismo dos Carboidratos , Carbono/metabolismo , Cromatografia Líquida , Glicólise , Metabolismo dos Lipídeos , Espectrometria de Massas , Análise do Fluxo Metabólico , Modelos Biológicos , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sementes/ultraestrutura , Amido/metabolismo , Fatores de Tempo
15.
Physiol Plant ; 157(3): 352-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27105581

RESUMO

Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cisteína/metabolismo , Dioxigenases/metabolismo , Redes e Vias Metabólicas , Sulfurtransferases/metabolismo , Aminoácidos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/análogos & derivados , Dioxigenases/genética , Metabolismo Energético , Glutationa/metabolismo , Mitocôndrias/metabolismo , Mutagênese Insercional , Ácido Pirúvico/metabolismo , Sementes/embriologia , Sementes/enzimologia , Sementes/genética , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Sulfurtransferases/genética , Tiossulfatos/metabolismo
16.
Plant Physiol ; 165(1): 92-104, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24692429

RESUMO

The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/enzimologia , Metabolismo dos Carboidratos , Dioxigenases/metabolismo , Mitocôndrias/enzimologia , Sementes/embriologia , Arabidopsis/crescimento & desenvolvimento , DNA Bacteriano/genética , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Mutagênese Insercional/genética , Oxirredução , Fenótipo , Sementes/enzimologia , Especificidade por Substrato , Sulfetos/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo
17.
Biochim Biophys Acta ; 1817(7): 990-1001, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22551905

RESUMO

We studied the role of cytochrome c (CYTc), which mediates electron transfer between Complexes III and IV, in cellular events related with mitochondrial respiration, plant development and redox homeostasis. We analyzed single and double homozygous mutants in both CYTc-encoding genes from Arabidopsis: CYTC-1 and CYTC-2. While individual mutants were similar to wild-type, knock-out of both genes produced an arrest of embryo development, showing that CYTc function is essential at early stages of plant development. Mutants in which CYTc levels were extremely reduced respective to wild-type had smaller rosettes with a pronounced decrease in parenchymatic cell size and an overall delay in development. Mitochondria from these mutants had lower respiration rates and a relative increase in alternative respiration. Furthermore, the decrease in CYTc severely affected the activity and the amount of Complex IV, without affecting Complexes I and III. Reactive oxygen species levels were reduced in these mutants, which showed induction of genes encoding antioxidant enzymes. Ascorbic acid levels were not affected, suggesting that a small amount of CYTc is enough to support its normal synthesis. We postulate that, in addition to its role as an electron carrier between Complexes III and IV, CYTc influences Complex IV levels in plants, probably reflecting a role of this protein in Complex IV stability. This double function of CYTc most likely explains why it is essential for plant survival.


Assuntos
Arabidopsis/enzimologia , Citocromos c/deficiência , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Antioxidantes/metabolismo , Arabidopsis/citologia , Arabidopsis/embriologia , Arabidopsis/genética , Ácido Ascórbico/metabolismo , Respiração Celular , Citocromos c/genética , Eletroforese em Gel Bidimensional , Estabilidade Enzimática , Genes de Plantas/genética , Homozigoto , Mutação/genética , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo , Estresse Fisiológico
18.
Biochim Biophys Acta ; 1807(9): 1206-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21699882

RESUMO

Hydrogen sulfide is enzymatically produced in mammalian tissues and functions as a gaseous transmitter. However, H(2)S is also highly toxic as it inhibits mitochondrial respiration at the level of cytochrome c oxidase, which additionally is involved in sulfide oxidation. The accumulation of toxic sulfide levels contributes to the pathology of some diseases. This paper demonstrates that sulfide toxicity can be modified, and dehydroascorbic acid functions as an effector in this process. It significantly reduces the inhibitory effect of sulfide on cytochrome c oxidase, resulting in higher rates of respiration and sulfide oxidation in rat mitochondria. After the addition of dehydroascorbic acid mitochondria maintained more than 50% of the oxygen consumption and ATP production rates with different substrates in the presence of high concentrations of sulfide that would normally lead to complete inhibition. Dehydroascorbic acid significantly increased the sulfide concentration necessary to cause half maximal inhibition of mitochondrial respiration and thus completely prevented inhibition at low, physiological sulfide concentrations. In addition, sulfide oxidation was stimulated and led to ATP production even at high concentrations. The decrease in sulfide toxicity was more pronounced when analyzing supermolecular functional units of the respiratory chain than in isolated cytochrome c oxidase activity. Furthermore, the protective effect of dehydroascorbic acid at high sulfide concentrations was completely abolished by quantitative solubilization of mitochondrial membrane proteins with dodeclymaltoside. These results suggest that binding of cytochrome c oxidase to other proteins probably within respiratory chain supercomplexes is involved in the modulation of sulfide oxidation and toxicity by dehydroascorbic acid.


Assuntos
Ácido Desidroascórbico/farmacologia , Mitocôndrias/efeitos dos fármacos , Sulfetos/metabolismo , Animais , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Sulfetos/toxicidade
19.
Plant Physiol ; 157(3): 1430-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875896

RESUMO

RNA PROCESSING FACTOR1 (RPF1) and RPF2 are pentatricopeptide repeat (PPR) proteins involved in 5' processing of different mitochondrial mRNAs in Arabidopsis (Arabidopsis thaliana). Both factors are highly similar to RESTORERS OF FERTILITY (RF), which are part of cytoplasmic male sterility/restoration systems in various plant species. These findings suggest a predominant role of RF-like PPR proteins in posttranscriptional 5' processing. To further explore the functions of this group of proteins, we examined a number of T-DNA lines carrying insertions in the corresponding PPR genes. This screening identified a nearly complete absence of mature ccmC transcripts in an At1g62930 T-DNA insertion line, a phenotype that could be restored by the introduction of the intact At1g62930 gene into the mutant. The insertion in this nuclear gene, which we now call RPF3, also leads to a severe reduction of the CcmC protein in mitochondria. The analysis of C24/rpf3-1 F2 hybrids lacking functional RPF3 genes revealed that this gene has less influence on the generation of the mature ccmC 5' transcript end derived from a distinct ccmC 5' upstream configuration found in mitochondrial DNAs from C24 and other accessions. These data show that a particular function of an RF-like protein is required only in connection with a distinct mtDNA configuration. Our new results further substantiate the fundamental role of RF-like PPR proteins in the posttranscriptional generation of plant mitochondrial 5' transcript termini.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ecótipo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação/genética , Peptídeos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Transcrição Gênica
20.
Plant Cell Environ ; 32(4): 349-67, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19143986

RESUMO

In plants, the enzymes for cysteine synthesis serine acetyltransferase (SAT) and O-acetylserine-(thiol)-lyase (OASTL) are present in the cytosol, plastids and mitochondria. However, it is still not clearly resolved to what extent the different compartments are involved in cysteine biosynthesis and how compartmentation influences the regulation of this biosynthetic pathway. To address these questions, we analysed Arabidopsis thaliana T-DNA insertion mutants for cytosolic and plastidic SAT isoforms. In addition, the subcellular distribution of enzyme activities and metabolite concentrations implicated in cysteine and glutathione biosynthesis were revealed by non-aqueous fractionation (NAF). We demonstrate that cytosolic SERAT1.1 and plastidic SERAT2.1 do not contribute to cysteine biosynthesis to a major extent, but may function to overcome transport limitations of O-acetylserine (OAS) from mitochondria. Substantiated by predominantly cytosolic cysteine pools, considerable amounts of sulphide and presence of OAS in the cytosol, our results suggest that the cytosol is the principal site for cysteine biosynthesis. Subcellular metabolite analysis further indicated efficient transport of cysteine, gamma-glutamylcysteine and glutathione between the compartments. With respect to regulation of cysteine biosynthesis, estimation of subcellular OAS and sulphide concentrations established that OAS is limiting for cysteine biosynthesis and that SAT is mainly present bound in the cysteine-synthase complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cisteína/biossíntese , Citosol/enzimologia , Plastídeos/enzimologia , Serina O-Acetiltransferase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína Sintase/metabolismo , DNA Bacteriano/genética , DNA de Plantas/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Insercional , Mutação , Serina O-Acetiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA