Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Wilderness Environ Med ; 35(1_suppl): 45S-66S, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38379474

RESUMO

To provide guidance to medical providers, wilderness users, and travelers, the Wilderness Medical Society convened an expert panel to develop evidence-based guidelines for treating water in situations where the potability of available water is not assured, including wilderness and international travel, areas impacted by disaster, and other areas without adequate sanitation. The guidelines present the available methods for reducing or eliminating microbiological contamination of water for individuals, groups, or households; evaluation of their effectiveness; and practical considerations. The evidence base includes both laboratory and clinical publications. The panel graded the recommendations based on the quality of supporting evidence and the balance between benefits and risks/burdens according to the criteria published by the American College of Chest Physicians.


Assuntos
Desastres , Medicina Selvagem , Humanos , Sociedades Médicas
2.
Emerg Infect Dis ; 29(7): 1357-1366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347505

RESUMO

More than 7.15 million cases of domestically acquired infectious waterborne illnesses occurred in the United States in 2014, causing 120,000 hospitalizations and 6,600 deaths. We estimated disease incidence for 17 pathogens according to recreational, drinking, and nonrecreational nondrinking (NRND) water exposure routes by using previously published estimates. In 2014, a total of 5.61 million (95% credible interval [CrI] 2.97-9.00 million) illnesses were linked to recreational water, 1.13 million (95% CrI 255,000-3.54 million) to drinking water, and 407,000 (95% CrI 72,800-1.29 million) to NRND water. Recreational water exposure was responsible for 36%, drinking water for 40%, and NRND water for 24% of hospitalizations from waterborne illnesses. Most direct costs were associated with pathogens found in biofilms. Estimating disease burden by water exposure route helps direct prevention activities. For each exposure route, water management programs are needed to control biofilm-associated pathogen growth; public health programs are needed to prevent biofilm-associated diseases.


Assuntos
Doenças Transmissíveis , Água Potável , Doenças Transmitidas pela Água , Humanos , Estados Unidos/epidemiologia , Doenças Transmissíveis/epidemiologia , Doenças Transmitidas pela Água/epidemiologia , Abastecimento de Água , Microbiologia da Água
3.
Emerg Infect Dis ; 27(1): 140-149, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350905

RESUMO

Provision of safe drinking water in the United States is a great public health achievement. However, new waterborne disease challenges have emerged (e.g., aging infrastructure, chlorine-tolerant and biofilm-related pathogens, increased recreational water use). Comprehensive estimates of the health burden for all water exposure routes (ingestion, contact, inhalation) and sources (drinking, recreational, environmental) are needed. We estimated total illnesses, emergency department (ED) visits, hospitalizations, deaths, and direct healthcare costs for 17 waterborne infectious diseases. About 7.15 million waterborne illnesses occur annually (95% credible interval [CrI] 3.88 million-12.0 million), results in 601,000 ED visits (95% CrI 364,000-866,000), 118,000 hospitalizations (95% CrI 86,800-150,000), and 6,630 deaths (95% CrI 4,520-8,870) and incurring US $3.33 billion (95% CrI 1.37 billion-8.77 billion) in direct healthcare costs. Otitis externa and norovirus infection were the most common illnesses. Most hospitalizations and deaths were caused by biofilm-associated pathogens (nontuberculous mycobacteria, Pseudomonas, Legionella), costing US $2.39 billion annually.


Assuntos
Doenças Transmissíveis , Doenças Transmitidas pela Água , Doenças Transmissíveis/epidemiologia , Custos de Cuidados de Saúde , Hospitalização , Humanos , Estados Unidos/epidemiologia , Microbiologia da Água , Doenças Transmitidas pela Água/epidemiologia
4.
MMWR Morb Mortal Wkly Rep ; 70(20): 733-738, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34014907

RESUMO

Outbreaks associated with treated recreational water can be caused by pathogens or chemicals in aquatic venues such as pools, hot tubs, water playgrounds, or other artificially constructed structures that are intended for recreational or therapeutic purposes. For the pseriod 2015-2019, public health officials from 36 states and the District of Columbia (DC) voluntarily reported 208 outbreaks associated with treated recreational water. Almost all (199; 96%) of the outbreaks were associated with public (nonbackyard) pools, hot tubs, or water playgrounds. These outbreaks resulted in at least 3,646 cases of illness, 286 hospitalizations, and 13 deaths. Among the 155 (75%) outbreaks with a confirmed infectious etiology, 76 (49%) were caused by Cryptosporidium (which causes cryptosporidiosis, a gastrointestinal illness) and 65 (42%) by Legionella (which causes Legionnaires' disease, a severe pneumonia, and Pontiac fever, a milder illness with flu-like symptoms). Cryptosporidium accounted for 2,492 (84%) of 2,953 cases resulting from the 155 outbreaks with a confirmed etiology. All 13 deaths occurred in persons affected by a Legionnaires' disease outbreak. Among the 208 outbreaks, 71 (34%) were associated with a hotel (i.e., hotel, motel, lodge, or inn) or a resort, and 107 (51%) started during June-August. Implementing recommendations in CDC's Model Aquatic Health Code (MAHC) (1) can help prevent outbreaks associated with treated recreational water in public aquatic venues.


Assuntos
Doenças Transmissíveis/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Recreação , Purificação da Água/estatística & dados numéricos , Banhos/efeitos adversos , Doenças Transmissíveis/etiologia , Cryptosporidium/isolamento & purificação , Estâncias para Tratamento de Saúde/estatística & dados numéricos , Humanos , Legionella/isolamento & purificação , Piscinas/estatística & dados numéricos , Estados Unidos/epidemiologia , Microbiologia da Água
5.
MMWR Morb Mortal Wkly Rep ; 70(36): 1242-1244, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499630

RESUMO

Wastewater surveillance, the measurement of pathogen levels in wastewater, is used to evaluate community-level infection trends, augment traditional surveillance that leverages clinical tests and services (e.g., case reporting), and monitor public health interventions (1). Approximately 40% of persons infected with SARS-CoV-2, the virus that causes COVID-19, shed virus RNA in their stool (2); therefore, community-level trends in SARS-CoV-2 infections, both symptomatic and asymptomatic (2) can be tracked through wastewater testing (3-6). CDC launched the National Wastewater Surveillance System (NWSS) in September 2020 to coordinate wastewater surveillance programs implemented by state, tribal, local, and territorial health departments to support the COVID-19 pandemic response. In the United States, wastewater surveillance was not previously implemented at the national level. As of August 2021, NWSS includes 37 states, four cities, and two territories. This report summarizes NWSS activities and describes innovative applications of wastewater surveillance data by two states, which have included generating alerts to local jurisdictions, allocating mobile testing resources, evaluating irregularities in traditional surveillance, refining health messaging, and forecasting clinical resource needs. NWSS complements traditional surveillance and enables health departments to intervene earlier with focused support in communities experiencing increasing concentrations of SARS-CoV-2 in wastewater. The ability to conduct wastewater surveillance is not affected by access to health care or the clinical testing capacity in the community. Robust, sustainable implementation of wastewater surveillance requires public health capacity for wastewater testing, analysis, and interpretation. Partnerships between wastewater utilities and public health departments are needed to leverage wastewater surveillance data for the COVID-19 response for rapid assessment of emerging threats and preparedness for future pandemics.


Assuntos
COVID-19/prevenção & controle , Pandemias/prevenção & controle , Vigilância em Saúde Pública/métodos , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia , COVID-19/epidemiologia , Centers for Disease Control and Prevention, U.S. , Humanos , Estados Unidos/epidemiologia
6.
MMWR Morb Mortal Wkly Rep ; 69(40): 1443-1449, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33031363

RESUMO

Washing hands often, especially during times when one is likely to acquire and spread pathogens,* is one important measure to help prevent the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), as well as other pathogens spread by respiratory or fecal-oral transmission (1,2). Studies have reported moderate to high levels of self-reported handwashing among adults worldwide during the COVID-19 pandemic (3-5)†; however, little is known about how handwashing behavior among U.S. adults has changed since the start of the pandemic. For this study, survey data from October 2019 (prepandemic) and June 2020 (during pandemic) were compared to assess changes in adults' remembering to wash their hands in six situations.§ Statistically significant increases in reported handwashing were seen in June 2020 compared with October 2019 in four of the six situations; the odds of remembering to wash hands was 2.3 times higher among respondents after coughing, sneezing, or blowing their nose, 2.0 times higher before eating at a restaurant, and 1.7 times higher before eating at home. Men, young adults aged 18-24 years, and non-Hispanic White (White) adults were less likely to remember to wash hands in multiple situations. Strategies to help persons remember to wash their hands frequently and at important times should be identified and implemented, especially among groups reporting low prevalence of remembering to wash their hands.


Assuntos
Infecções por Coronavirus/prevenção & controle , Desinfecção das Mãos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Adolescente , Adulto , Idoso , COVID-19 , Infecções por Coronavirus/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/epidemiologia , Inquéritos e Questionários , Estados Unidos/epidemiologia , Adulto Jovem
7.
MMWR Morb Mortal Wkly Rep ; 68(19): 433-438, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31095536

RESUMO

Pool chemicals are added to water in treated recreational water venues (e.g., pools, hot tubs/spas, and water playgrounds) primarily to protect public health. Pool chemicals inactivate pathogens (e.g., chlorine or bromine), optimize pH (e.g., muriatic acid), and increase water clarity, which helps prevent drowning by enabling detection of distressed swimmers underwater. However, pool chemicals can cause injuries if mishandled. To estimate the annual number of U.S. emergency department (ED) visits for pool chemical injuries, CDC analyzed 2008-2017 data from the National Electronic Injury Surveillance System (NEISS), operated by the U.S. Consumer Product Safety Commission (CPSC). During 2015-2017, pool chemical injuries led to an estimated 13,508 (95% confidence interval [CI] = 9,087-17,929) U.S. ED visits; 36.4% (estimated 4,917 [95% CI = 3,022-6,811]) of patients were aged <18 years. At least 56.3% (estimated 7,601 [95% CI = 4,587-10,615]) of injuries occurred at a residence. Two thirds of the injuries occurred during the period from Memorial Day weekend through Labor Day. This report also describes a toxic chlorine gas incident that occurred at a public pool in New York in 2018. Pool chemical injuries are preventable. CDC's Model Aquatic Health Code (MAHC) is an important resource that operators of public treated recreational water venues (e.g., at hotels, apartment complexes, and waterparks) can use to prevent pool chemical injuries.


Assuntos
Bromo/toxicidade , Cloretos/toxicidade , Ácido Clorídrico/toxicidade , Vigilância da População , Piscinas , Ferimentos e Lesões/induzido quimicamente , Ferimentos e Lesões/epidemiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , New York/epidemiologia , Estações do Ano , Estados Unidos/epidemiologia , Ferimentos e Lesões/terapia , Adulto Jovem
8.
J Water Health ; 17(5): 777-787, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638028

RESUMO

Naegleria fowleri causes the usually fatal disease primary amebic meningoencephalitis (PAM), typically in people who have been swimming in warm, untreated freshwater. Recently, some cases in the United States were associated with exposure to treated drinking water. In 2013, a case of PAM was reported for the first time in association with the exposure to water from a US treated drinking water system colonized with culturable N. fowleri. This system and another were found to have multiple areas with undetectable disinfectant residual levels. In response, the water distribution systems were temporarily converted from chloramine disinfection to chlorine to inactivate N. fowleri and reduced biofilm in the distribution systems. Once >1.0 mg/L free chlorine residual was attained in all systems for 60 days, water testing was performed; N. fowleri was not detected in water samples after the chlorine conversion. This investigation highlights the importance of maintaining adequate residual disinfectant levels in drinking water distribution systems. Water distribution system managers should be knowledgeable about the ecology of their systems, understand potential water quality changes when water temperatures increase, and work to eliminate areas in which biofilm growth may be problematic and affect water quality.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central , Água Potável/parasitologia , Naegleria fowleri , Purificação da Água/métodos , Desinfetantes , Humanos , Louisiana , Estados Unidos
9.
Wilderness Environ Med ; 30(4S): S100-S120, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31668519

RESUMO

To provide guidance to clinicians, the Wilderness Medical Society convened experts to develop evidence-based guidelines for water disinfection in situations where the potability of available water is not ensured, including wilderness and international travel, areas affected by disaster, and other areas without adequate sanitation. The guidelines present the available methods for reducing or eliminating microbiologic contamination of water for individuals, groups, or households; evaluation of their effectiveness; and practical considerations. The evidence evaluation includes both laboratory and clinical publications. The panel graded the recommendations based on the quality of supporting evidence and the balance between benefits and risks or burdens, according to the criteria published by the American College of Chest Physicians.


Assuntos
Padrões de Prática Médica , Purificação da Água/métodos , Medicina Selvagem/normas , Desastres , Desinfecção/métodos , Humanos , Sociedades Médicas , Doença Relacionada a Viagens , Microbiologia da Água , Medicina Selvagem/métodos
10.
Clin Infect Dis ; 66(4): 548-553, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401275

RESUMO

Background: Naegleria fowleri is a thermophilic ameba found in freshwater that causes primary amebic meningoencephalitis (PAM) when it enters the nose and migrates to the brain. Patient exposure to water containing the ameba typically occurs in warm freshwater lakes and ponds during recreational water activities. In June 2016, an 18-year-old woman died of PAM after traveling to North Carolina, where she participated in rafting on an artificial whitewater river. Methods: We conducted an epidemiologic and environmental investigation to determine the water exposure that led to the death of this patient. Results: The case patient's most probable water exposure occurred while rafting on an artificial whitewater river during which she was thrown out of the raft and submerged underwater. The approximately 11.5 million gallons of water in the whitewater facility were partially filtered, subjected to ultraviolet light treatment, and occasionally chlorinated. Heavy algal growth was noted. Eleven water-related samples were collected from the facility; all were positive for N. fowleri. Of 5 samples collected from the nearby natural river, 1 sediment sample was positive for N. fowleri. Conclusions: This investigation documents a novel exposure to an artificial whitewater river as the likely exposure causing PAM in this case. Conditions in the whitewater facility (warm, turbid water with little chlorine and heavy algal growth) rendered the water treatment ineffective and provided an ideal environment for N. fowleri to thrive. The combination of natural and engineered elements at the whitewater facility created a challenging environment to control the growth of N. fowleri.


Assuntos
Amoeba/isolamento & purificação , Encéfalo/parasitologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Meningoencefalite/diagnóstico , Meningoencefalite/etiologia , Rios/parasitologia , Acanthamoeba/genética , Acanthamoeba/isolamento & purificação , Adolescente , Amoeba/genética , Balamuthia mandrillaris/genética , Balamuthia mandrillaris/isolamento & purificação , Infecções Protozoárias do Sistema Nervoso Central/etiologia , Meio Ambiente , Evolução Fatal , Feminino , Humanos , Meningoencefalite/parasitologia , Naegleria fowleri/genética , Naegleria fowleri/isolamento & purificação , North Carolina , Parques Recreativos , Reação em Cadeia da Polimerase
11.
MMWR Morb Mortal Wkly Rep ; 67(19): 547-551, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29771872

RESUMO

Outbreaks associated with exposure to treated recreational water can be caused by pathogens or chemicals in venues such as pools, hot tubs/spas, and interactive water play venues (i.e., water playgrounds). During 2000-2014, public health officials from 46 states and Puerto Rico reported 493 outbreaks associated with treated recreational water. These outbreaks resulted in at least 27,219 cases and eight deaths. Among the 363 outbreaks with a confirmed infectious etiology, 212 (58%) were caused by Cryptosporidium (which causes predominantly gastrointestinal illness), 57 (16%) by Legionella (which causes Legionnaires' disease, a severe pneumonia, and Pontiac fever, a milder illness with flu-like symptoms), and 47 (13%) by Pseudomonas (which causes folliculitis ["hot tub rash"] and otitis externa ["swimmers' ear"]). Investigations of the 363 outbreaks identified 24,453 cases; 21,766 (89%) were caused by Cryptosporidium, 920 (4%) by Pseudomonas, and 624 (3%) by Legionella. At least six of the eight reported deaths occurred in persons affected by outbreaks caused by Legionella. Hotels were the leading setting, associated with 157 (32%) of the 493 outbreaks. Overall, the outbreaks had a bimodal temporal distribution: 275 (56%) outbreaks started during June-August and 46 (9%) in March. Assessment of trends in the annual counts of outbreaks caused by Cryptosporidium, Legionella, or Pseudomonas indicate mixed progress in preventing transmission. Pathogens able to evade chlorine inactivation have become leading outbreak etiologies. The consequent outbreak and case counts and mortality underscore the utility of CDC's Model Aquatic Health Code (https://www.cdc.gov/mahc) to prevent outbreaks associated with treated recreational water.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Recreação , Microbiologia da Água , Purificação da Água/estatística & dados numéricos , Humanos , Estados Unidos/epidemiologia
12.
MMWR Morb Mortal Wkly Rep ; 67(25): 701-706, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29953425

RESUMO

Outbreaks associated with untreated recreational water can be caused by pathogens, toxins, or chemicals in fresh water (e.g., lakes, rivers) or marine water (e.g., ocean). During 2000-2014, public health officials from 35 states and Guam voluntarily reported 140 untreated recreational water-associated outbreaks to CDC. These outbreaks resulted in at least 4,958 cases of disease and two deaths. Among the 95 outbreaks with a confirmed infectious etiology, enteric pathogens caused 80 (84%); 21 (22%) were caused by norovirus, 19 (20%) by Escherichia coli, 14 (15%) by Shigella, and 12 (13%) by Cryptosporidium. Investigations of these 95 outbreaks identified 3,125 cases; 2,704 (87%) were caused by enteric pathogens, including 1,459 (47%) by norovirus, 362 (12%) by Shigella, 314 (10%) by Cryptosporidium, and 155 (5%) by E. coli. Avian schistosomes were identified as the cause in 345 (11%) of the 3,125 cases. The two deaths were in persons affected by a single outbreak (two cases) caused by Naegleria fowleri. Public parks (50 [36%]) and beaches (45 [32%]) were the leading settings associated with the 140 outbreaks. Overall, the majority of outbreaks started during June-August (113 [81%]); 65 (58%) started in July. Swimmers and parents of young swimmers can take steps to minimize the risk for exposure to pathogens, toxins, and chemicals in untreated recreational water by heeding posted advisories closing the beach to swimming; not swimming in discolored, smelly, foamy, or scummy water; not swimming while sick with diarrhea; and limiting water entering the nose when swimming in warm freshwater.


Assuntos
Doenças Transmissíveis/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Água Doce , Recreação , Praias/estatística & dados numéricos , Água Doce/microbiologia , Água Doce/parasitologia , Água Doce/virologia , Humanos , Lagos/microbiologia , Lagos/parasitologia , Lagos/virologia , Parques Recreativos/estatística & dados numéricos , Lagoas/microbiologia , Lagoas/parasitologia , Lagoas/virologia , Rios/microbiologia , Rios/parasitologia , Rios/virologia , Fatores de Tempo , Estados Unidos/epidemiologia , Purificação da Água
13.
J Water Health ; 16(1): 87-92, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29424722

RESUMO

During the 2012 summer swim season, aquatic venue data and filter backwash samples were collected from 127 metro-Atlanta pools. Last-recorded water chemistry measures indicated 98% (157/161) of samples were from pools with ≥1 mg/L residual chlorine without stabilized chlorine or ≥2 mg/L with stabilized chlorine and 89% (144/161) had pH readings 7.2-7.8. These water quality parameters are consistent with the 2016 Model Aquatic Health Code (2nd edition) recommendations. We used previously validated real-time polymerase chain reaction assays for detection of seven enteric microbes, including Escherichia coli, and Pseudomonas aeruginosa. E. coli was detected in 58% (93/161) of samples, signifying that swimmers likely introduced fecal material into pool water. P. aeruginosa was detected in 59% (95/161) of samples, indicating contamination from swimmers or biofilm growth on surfaces. Cryptosporidium spp. and Giardia duodenalis were each detected in approximately 1% of samples. These findings indicate the need for aquatics staff, state and local environmental health practitioners, and swimmers to each take steps to minimize the risk of transmission of infectious pathogens.


Assuntos
Piscinas , Microbiologia da Água , Qualidade da Água , Biofilmes , Cloro/análise , Cryptosporidium/isolamento & purificação , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Fezes/parasitologia , Georgia , Giardia lamblia/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Pseudomonas aeruginosa/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano
14.
J Water Health ; 16(6): 1018-1028, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30540275

RESUMO

The Navajo Nation includes approximately 250,000 American Indians living in a remote high desert environment with limited access to public water systems. We conducted a pilot case-control study to assess associations between acute gastroenteritis (AGE) and water availability, use patterns, and quality. Case patients with AGE and non-AGE controls who presented for care to two Indian Health Service hospitals were recruited. Data on demographics and water use practices were collected using a standard questionnaire. Household drinking water was tested for presence of pathogens, coliforms, and residual chlorine. Sixty-one subjects (32 cases and 29 controls) participated in the study. Cases and controls were not significantly different with respect to water sources, quality, or patterns of use. Twenty-one percent (n = 12) of study participants resided in dwellings not connected to a community water system. Eleven percent (n = 7) of subjects reported drinking hauled water from unregulated sources. Coliform bacteria were present in 44% (n = 27) of household water samples, and 68% (n = 40) of samples contained residual chlorine concentrations of <0.2 mg/L. This study highlights issues with water availability, quality, and use patterns within the Navajo Nation, including sub-optimal access to community water systems, and use of water hauled from unregulated sources.


Assuntos
Gastroenterite/epidemiologia , Qualidade da Água/normas , Abastecimento de Água/estatística & dados numéricos , Estudos de Casos e Controles , Gastroenterite/prevenção & controle , Humanos , Indígenas Norte-Americanos/estatística & dados numéricos
15.
MMWR Morb Mortal Wkly Rep ; 66(44): 1222-1225, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29120997

RESUMO

Waterborne disease outbreaks in the United States are associated with a wide variety of water exposures and are reported annually to CDC on a voluntary basis by state and territorial health departments through the National Outbreak Reporting System (NORS). A majority of outbreaks arise from exposure to drinking water (1) or recreational water (2), whereas others are caused by an environmental exposure to water or an undetermined exposure to water. During 2013-2014, 15 outbreaks associated with an environmental exposure to water and 12 outbreaks with an undetermined exposure to water were reported, resulting in at least 289 cases of illness, 108 hospitalizations, and 17 deaths. Legionella was responsible for 63% of the outbreaks, 94% of hospitalizations, and all deaths. Outbreaks were also caused by Cryptosporidium, Pseudomonas, and Giardia, including six outbreaks of giardiasis caused by ingestion of water from a river, stream, or spring. Water management programs can effectively prevent outbreaks caused by environmental exposure to water from human-made water systems, while proper point-of-use treatment of water can prevent outbreaks caused by ingestion of water from natural water systems.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Poluição da Água/efeitos adversos , Doenças Transmitidas pela Água/epidemiologia , Humanos , Estados Unidos/epidemiologia , Poluição da Água/estatística & dados numéricos
16.
MMWR Morb Mortal Wkly Rep ; 66(44): 1216-1221, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29121003

RESUMO

Provision of safe water in the United States is vital to protecting public health (1). Public health agencies in the U.S. states and territories* report information on waterborne disease outbreaks to CDC through the National Outbreak Reporting System (NORS) (https://www.cdc.gov/healthywater/surveillance/index.html). During 2013-2014, 42 drinking water-associated† outbreaks were reported, accounting for at least 1,006 cases of illness, 124 hospitalizations, and 13 deaths. Legionella was associated with 57% of these outbreaks and all of the deaths. Sixty-nine percent of the reported illnesses occurred in four outbreaks in which the etiology was determined to be either a chemical or toxin or the parasite Cryptosporidium. Drinking water contamination events can cause disruptions in water service, large impacts on public health, and persistent community concern about drinking water quality. Effective water treatment and regulations can protect public drinking water supplies in the United States, and rapid detection, identification of the cause, and response to illness reports can reduce the transmission of infectious pathogens and harmful chemicals and toxins.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Água Potável , Vigilância da População , Doenças Transmitidas pela Água/epidemiologia , Humanos , Estados Unidos/epidemiologia
17.
J Water Health ; 15(3): 374-384, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28598342

RESUMO

Removal of Cryptosporidium-sized microspheres and Cryptosporidium parvum oocysts from swimming pools was investigated using diatomaceous earth (DE) precoat filtration and perlite-sand filtration. In pilot-scale experiments, microsphere removals of up to 2 log were obtained with 0.7 kg·DE/m2 at a filtration rate of 5 m/h. A slightly higher microsphere removal (2.3 log) was obtained for these DE-precoated filters when the filtration rate was 3.6 m/h. Additionally, pilot-scale perlite-sand filters achieved greater than 2 log removal when at least 0.37 kg/m2 of perlite was used compared to 0.1-0.4 log removal without perlite both at a surface loading rate of 37 m/h. Full-scale testing achieved 2.7 log of microspheres and oocysts removal when 0.7 kg·DE/m2 was used at 3.6 m/h. Removals were significantly decreased by a 15-minute interruption of the flow (without any mechanical agitation) to the DE filter in pilot-scale studies, which was not observed in full-scale filters. Microsphere removals were 2.7 log by perlite-sand filtration in a full-scale swimming pool filter operated at 34 m/h with 0.5 kg/m2 of perlite. The results demonstrate that either a DE precoat filter or a perlite-sand filter can improve the efficiency of removal of microspheres and oocysts from swimming pools over a standard sand filter under the conditions studied.


Assuntos
Cryptosporidium parvum/isolamento & purificação , Filtração/métodos , Microesferas , Saúde Pública/métodos , Piscinas , Purificação da Água/métodos , Óxido de Alumínio/química , Cryptosporidium parvum/crescimento & desenvolvimento , Terra de Diatomáceas/química , Oocistos , Poliestirenos/análise , Saúde Pública/instrumentação , Dióxido de Silício/química , Purificação da Água/instrumentação
18.
BMC Public Health ; 17(1): 23, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056940

RESUMO

BACKGROUND: On 6 February 2015, Kampala city authorities alerted the Ugandan Ministry of Health of a "strange disease" that killed one person and sickened dozens. We conducted an epidemiologic investigation to identify the nature of the disease, mode of transmission, and risk factors to inform timely and effective control measures. METHODS: We defined a suspected case as onset of fever (≥37.5 °C) for more than 3 days with abdominal pain, headache, negative malaria test or failed anti-malaria treatment, and at least 2 of the following: diarrhea, nausea or vomiting, constipation, fatigue. A probable case was defined as a suspected case with a positive TUBEX® TF test. A confirmed case had blood culture yielding Salmonella Typhi. We conducted a case-control study to compare exposures of 33 suspected case-patients and 78 controls, and tested water and juice samples. RESULTS: From 17 February-12 June, we identified 10,230 suspected, 1038 probable, and 51 confirmed cases. Approximately 22.58% (7/31) of case-patients and 2.56% (2/78) of controls drank water sold in small plastic bags (ORM-H = 8.90; 95%CI = 1.60-49.00); 54.54% (18/33) of case-patients and 19.23% (15/78) of controls consumed locally-made drinks (ORM-H = 4.60; 95%CI: 1.90-11.00). All isolates were susceptible to ciprofloxacin and ceftriaxone. Water and juice samples exhibited evidence of fecal contamination. CONCLUSION: Contaminated water and street-vended beverages were likely vehicles of this outbreak. At our recommendation authorities closed unsafe water sources and supplied safe water to affected areas.


Assuntos
Surtos de Doenças , Água Potável/microbiologia , Fezes , Contaminação de Alimentos , Sucos de Frutas e Vegetais/microbiologia , Salmonella typhi , Febre Tifoide , Adolescente , Adulto , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bebidas/microbiologia , Criança , Diarreia/epidemiologia , Diarreia/etiologia , Diarreia/microbiologia , Feminino , Febre/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/crescimento & desenvolvimento , Salmonella typhi/isolamento & purificação , Febre Tifoide/epidemiologia , Febre Tifoide/etiologia , Febre Tifoide/microbiologia , Febre Tifoide/transmissão , Uganda/epidemiologia , Poluição da Água , Abastecimento de Água , Adulto Jovem
19.
Clin Infect Dis ; 60(8): e36-42, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595746

RESUMO

BACKGROUND: Naegleria fowleri is a climate-sensitive, thermophilic ameba found in warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri-containing water enters the nose, typically during swimming, and migrates to the brain via the olfactory nerve. In August 2013, a 4-year-old boy died of meningoencephalitis of unknown etiology in a Louisiana hospital. METHODS: Clinical and environmental testing and a case investigation were initiated to determine the cause of death and to identify potential exposures. RESULTS: Based on testing of cerebrospinal fluid and brain specimens, the child was diagnosed with PAM. His only reported water exposure was tap water; in particular, tap water that was used to supply water to a lawn water slide on which the child had played extensively prior to becoming ill. Water samples were collected from both the home and the water distribution system that supplied the home and tested; N. fowleri was identified in water samples from both the home and the water distribution system. CONCLUSIONS: This case is the first reported PAM death associated with culturable N. fowleri in tap water from a US treated drinking water system. This case occurred in the context of an expanding geographic range for PAM beyond southern states, with recent case reports from Minnesota, Kansas, and Indiana. This case also highlights the role of adequate disinfection throughout drinking water distribution systems and the importance of maintaining vigilance when operating drinking water systems using source waters with elevated temperatures.


Assuntos
Amebíase/diagnóstico , Amebíase/parasitologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Água Potável/parasitologia , Naegleria fowleri/isolamento & purificação , Encéfalo/parasitologia , Líquido Cefalorraquidiano/parasitologia , Pré-Escolar , Evolução Fatal , Humanos , Louisiana , Masculino , Oligopeptídeos
20.
Appl Environ Microbiol ; 81(12): 4207-15, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862226

RESUMO

Cercarial dermatitis, also known as swimmer's itch, is an allergenic skin reaction followed by intense itching caused by schistosome cercariae penetrating human skin. Cercarial dermatitis outbreaks occur globally and are frequently associated with freshwater lakes and are occasionally associated with marine or estuarine waters where birds reside year-round or where migratory birds reside. In this study, a broadly reactive TaqMan assay targeting 18S rRNA gene (ribosomal DNA [rDNA]) sequences that was based on a genetically diverse panel of schistosome isolates representing 13 genera and 20 species (the 18S rDNA TaqMan assay) was developed. A PCR assay was also developed to amplify a 28S rDNA region for subsequent sequencing to identify schistosomes. When applied to surface water samples seeded with Schistosoma mansoni cercariae, the 18S rDNA TaqMan assay enabled detection at a level of 5 S. mansoni cercariae in 100 liters of lake water. The 18S rDNA TaqMan and 28S rDNA PCR sequencing assays were also applied to 100-liter water samples collected from lakes in Nebraska and Wisconsin where there were reported dermatitis outbreaks. Avian schistosome DNA was detected in 11 of 34 lake water samples using the TaqMan assay. Further 28S rDNA sequence analysis of positive samples confirmed the presence of avian schistosome DNA and provided a preliminary identification of the avian schistosomes in 10 of the 11 samples. These data indicate that the broadly schistosome-reactive TaqMan assay can be effective for rapid screening of large-volume water samples for detection of avian schistosomes, thereby facilitating timely response actions to mitigate or prevent dermatitis outbreaks. Additionally, samples positive by the 18S rDNA TaqMan assay can be further assayed using the 28S rDNA sequencing assay to both confirm the presence of schistosomes and contribute to their identification.


Assuntos
Aves/parasitologia , Água Doce/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Schistosomatidae/isolamento & purificação , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Doenças das Aves/parasitologia , DNA Ribossômico/genética , Microbiologia Ambiental , Humanos , Limite de Detecção , Dados de Sequência Molecular , Nebraska , Filogenia , Schistosomatidae/genética , Alinhamento de Sequência , Dermatopatias Parasitárias/diagnóstico , Dermatopatias Parasitárias/prevenção & controle , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA