Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Pharmacol Sci ; 154(2): 61-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246729

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is the most common childhood-onset psychiatric disorder. We investigated the effects of systemic administration of monoamine reuptake inhibitors on long-term potentiation (LTP) formation and monoamine release in the medial prefrontal cortex (mPFC) of the stroke-prone spontaneously hypertensive rat (SHRSP)/Ezo, an animal model of ADHD, and its genetic control, Wistar Kyoto (WKY)/Ezo, to elucidate the functional changes in the mPFC monoamine neural system. Methylphenidate (dopamine (DA) and noradrenaline (NA) reuptake inhibitor) and desipramine (NA reuptake inhibitor) improved LTP formation defects in the mPFC of SHRSP/Ezo, suggesting that NA or both DA and NA are required for improvement of impaired LTP. Methylphenidate increased mPFC DA in both WKY/Ezo and SHRSP/Ezo, but the increase was greater in the former. GBR-12909 (DA reuptake inhibitor) increased mPFC DA in WKY/Ezo but had no effect in SHRSP/Ezo. This may be because DA transporter in SHRSP/Ezo is functionally impaired and contributes less to DA reuptake, so its inhibition did not increase DA level. Meanwhile, basal DA levels in the mPFC of SHRSP/Ezo were paradoxically decreased. These results suggest that functional changes in the DA and NA neural system in the frontal lobe are involved in the pathology of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Metilfenidato , Humanos , Ratos , Animais , Criança , Ratos Endogâmicos WKY , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Ratos Endogâmicos SHR , Aminas , Metilfenidato/farmacologia , Modelos Animais , Dopamina
2.
J Pharmacol Sci ; 152(2): 90-102, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169484

RESUMO

We aimed to clarify the effect of nafamostat mesilate (nafamostat) on intestinal mucositis as well as the potentiation of intestinal 5-hydroxytryptamine (5-HT) dynamics induced by methotrexate, an anti-cancer drug, in rats. Rats received intraperitoneal methotrexate at 12.5 mg/kg/day for 4 days. In addition, 1, 3, or 10 mg/kg/day of nafamostat was given subcutaneously for 4 days. Ninety-six hours after the first administration of methotrexate, jejunal tissues were collected for analysis. The results showed that 1 mg/kg, but not 3 or 10 mg/kg, of nafamostat significantly ameliorated the methotrexate-induced body weight loss. Moreover, 1 mg/kg of nafamostat significantly improved methotrexate-induced mucositis, including villus atrophy. Nafamostat (1 mg/kg) significantly inhibited the methotrexate-induced mRNA expression of pro-inflammatory cytokines and cyclooxygenase-2, as well as methotrexate-induced 5-HT content and tryptophan hydroxylase (TPH) activity. In addition, it tended to inhibit the number of anti-TPH antibody-positive cells and significantly inhibited the number of anti-substance P antibody-positive cells. These findings suggest that low-dose nafamostat ameliorates tissue injury and 5-HT and substance P synthesis in methotrexate-induced mucositis. Nafamostat may be a novel therapeutic strategy for the prevention and treatment of mucositis as well as 5-HT- and/or substance P-related adverse effects in cancer chemotherapy.


Assuntos
Metotrexato , Mucosite , Ratos , Animais , Metotrexato/efeitos adversos , Serotonina/metabolismo , Mucosite/induzido quimicamente , Intestinos , Guanidinas/farmacologia
3.
Pharmacology ; 107(11-12): 574-583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36007495

RESUMO

INTRODUCTION: The most detrimental factor preventing the use of oral iron in the treatment of iron deficiency anemia is gastrointestinal side effects accompanied by nausea and vomiting. Anorexia is a known secondary effect of nausea and vomiting. The important gastrointestinal signaling molecule 5-hydroxytryptamine (5-HT) is critically involved in not only physiological function but also nausea and vomiting. The present study was designed to compare the effects of the administration of sodium ferrous citrate (SF) and ferric citrate hydrate (FC) to rats on anorexia and hyperplasia of enterochromaffin cells, which mainly synthesize and store 5-HT. METHODS: Rats received either SF (3 or 30 mg/kg/day) or FC (30 mg/kg/day) orally for 4 days. Food and water intakes were measured every 24 h during the study. At 96 h after the first administration of the oral iron preparation, the duodenal and jejunal tissues were collected for analysis. Enterochromaffin cells were detected by immunohistochemical analysis. RESULTS: Administration of 3 mg/kg SF had no effect on anorexia but led to increased hyperplasia of enterochromaffin cells in the duodenum (p < 0.1). Administration of 30 mg/kg SF significantly decreased food and water intakes and significantly increased hyperplasia of enterochromaffin cells in the duodenum and jejunum. Alternatively, administration of 30 mg/kg FC had no significant effect on food and water intakes or hyperplasia of enterochromaffin cells. CONCLUSION: The lower impact on the hyperplasia of enterochromaffin cells of FC compared to SF may contribute to the maintenance of rats' physical condition.


Assuntos
Células Enterocromafins , Serotonina , Ratos , Animais , Hiperplasia , Anorexia , Ferro , Intestino Delgado , Vômito , Náusea , Água
4.
Biol Pharm Bull ; 44(6): 853-860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078818

RESUMO

Elevated mechanical stress on blood vessels associated with hypertension has a direct effect on the function of vascular endothelial cells and vascular smooth muscle cells (VSMCs). In the present study, we have identified the effect of pulsatile pressure stress on cyclooxygenase-2 (COX-2) expression induced by interleukin (IL)-1ß in cultured rat VSMCs. VSMCs were isolated from aortic media of Wistar rats and cultured. Pulsatile pressure applied to VSMCs was repeatedly given between either 80 and 160 mmHg, which simulates systolic hypertension, or 80 and 120 mmHg, which simulates normal blood pressure, at a frequency of 4 cycles per min using our original apparatus. Pressure loading that simulates systolic hypertension reduced IL-1ß-induced COX-2 expression. The pressure also inhibited the rapid and transient phosphorylation of extracellular signal-regulated kinase (ERK) induced by IL-1ß. IL-1ß-induced COX-2 expression was significantly inhibited by a specific conventional protein kinase C (PKC) inhibitor. Pressure loading that simulates systolic hypertension also reduced phorbol myristate 13-acetate (PMA) (a PKC activator)-induced COX-2 expression and the rapid and transient phosphorylation of ERK. Pressure loading that simulates normal blood pressure had no effect on IL-1ß- and PMA-induced COX-2 expression. The present study shows that pressure stress between 80 and 160 mmHg, which simulates systolic hypertension reduces IL-1ß-induced COX-2 expression by affecting a mechanism involving PKC and ERK signaling pathways. Downregulation of COX-2 expression in VSMCs by abnormal pressure stress may further worsen local vascular injury associated with hypertension.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Hipertensão/metabolismo , Interleucina-1beta , Miócitos de Músculo Liso/metabolismo , Estresse Mecânico , Animais , Pressão Sanguínea , Células Cultivadas , Ciclo-Oxigenase 2/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Fosforilação , Ratos Wistar , Acetato de Tetradecanoilforbol
5.
Microbiol Immunol ; 60(1): 56-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26612065

RESUMO

Transforming growth factor-beta (TGF-ß) is a multifunctional cytokine responsible for both immune regulation and tissue repair. Although TGF-ß consists of TGF-ß1, -ß2, and -ß3 in mammals, isoform-selective transcriptional regulation is less well documented in myeloid linage cells such as macrophages. In the present study, the effect of the stress-related catecholamine adrenaline on the expression of TGF-ß isoforms in RAW264.7 macrophages and murine bone marrow-derived macrophages was examined. Treatment with adrenaline markedly increased the mRNA expression of TGF-ß3 but not of TGF-ß1 and -ß2. Agonist and antagonist studies indicated that adrenaline-induced TGF-ß3 mRNA expression is mediated via ß2 -adrenoceptor. Protein kinase A (PKA) inhibitor H89 was found to block an increase in adrenoceptor-mediated TGF-ß3 mRNA expression. The membrane-permeable cAMP analog 8-Br-cAMP increased the mRNA expression of TGF-ß3 but not of TGF-ß1 and -ß2. Thus, the ß2 -adrenoceptor-mediated cAMP-PKA pathway appears to enhance TGF-ß3 mRNA expression in macrophages. Adrenoceptor-mediated TGF-ß3 expression by macrophages may influence immune regulation and tissue repair in conditions of stress, during which the sympathetic-nervous system releases catecholamines.


Assuntos
Antagonistas Adrenérgicos/farmacologia , Epinefrina/farmacologia , Macrófagos/fisiologia , RNA Mensageiro/biossíntese , Fator de Crescimento Transformador beta/genética , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Células RAW 264.7 , RNA Mensageiro/genética , Receptores Adrenérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
6.
Microbiol Immunol ; 60(6): 382-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27059942

RESUMO

While it has been suggested that IL-33 plays pathogenic roles in various disorders, the factors that stimulate IL-33 production are poorly characterized. In the present study, the effect of cyclic adenosine monophosphate (cAMP) signaling on IL-33 production in RAW264.7 macrophages in response to various doses of LPS was examined. High-dose LPS treatment induced IL-33 and TNF protein production in RAW264.7 macrophages. In contrast, low-dose LPS failed to induce IL-33 production while significantly inducing TNF production. In the presence of the membrane-permeable cAMP analog 8-Br-cAMP, low-dose LPS induced vigorous IL-33 production. This phenomenon was consistent with amounts of mRNA. Similarly, the cAMP-increasing agent adrenaline also enhanced the sensitivity of RAW264.7 macrophages to LPS as demonstrated by IL-33 production. The protein kinase A (PKA) inhibitor H89 blocked the effects of 8-Br-cAMP and adrenaline on IL-33 production, suggesting that PKA is involved in IL-33 induction. Taken together, cAMP-mediated signaling pathway appears to enhance the sensitivity of RAW264.7 macrophages to LPS with respect to IL-33 production. Our findings suggest that stress events and the subsequent secretion of adrenaline enhance macrophage production via IL-33; this process may be associated with the pathogenesis of various disorders involving IL-33.


Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , AMP Cíclico/metabolismo , Interleucina-33/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Epinefrina/metabolismo , Epinefrina/farmacologia , Interleucina-33/genética , Macrófagos/metabolismo , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Células RAW 264.7 , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
7.
J Pharmacol Sci ; 124(3): 394-407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599137

RESUMO

Gender differences in psychiatric disorders are considered to be associated with the serotonergic (5-HTergic) system; however the underlying mechanisms have not been clearly elucidated. In this study, possible involvement of the median raphe nucleus (MRN)-hippocampus 5-HTergic system in gender-specific emotional regulation was investigated, focusing on synaptic plasticity in rats. A behavioral study using a contextual fear conditioning (CFC) paradigm showed that the females exhibited low anxiety-like behavior. Extracellular 5-HT levels in the hippocampus were increased by CFC only in the males. Long-term potentiation (LTP) in the hippocampal CA1 field was suppressed after CFC in the males, which was mimicked by the synaptic response to MRN electrical stimulation. In the MRN, 5-HT immunoreactive cells significantly increased in the females compared with those in the males. Pretreatment with the 5-HT1A receptor agonists tandospirone (10 mg/kg, i.p.) and 8-OH DPAT (3 mg/kg, i.p.) significantly suppressed LTP induction in the males. Synaptic responses to CFC and 5-HT1A receptor interventions were not observed in the females. These results suggest that the metaplastic 5-HTergic mechanism via 5-HT1A receptors in the MRN-hippocampus pathway is a key component for gender-specific emotional regulation and may be a cause of psychiatric disorders associated with vulnerability or resistance to emotional stress.


Assuntos
Emoções Manifestas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Núcleos da Rafe/patologia , Receptores 5-HT1 de Serotonina/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Feminino , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Transtornos Mentais/etiologia , Transtornos Mentais/psicologia , Metaplasia/genética , Ratos , Ratos Wistar , Serotonina/metabolismo , Caracteres Sexuais , Estresse Psicológico/complicações
8.
J Anesth ; 28(3): 390-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24113864

RESUMO

PURPOSE: Ketamine, a noncompetitive N-methyl-D-aspartate receptor antagonist, has been used for the treatment of cancer pain as an analgesic adjuvant to opioids. However, ketamine is known to produce psychotomimetic side effects including cognitive impairments under a high-dose situation, presumably as the result of cortical dysfunction. Here, we investigated whether low-dose ketamine was useful as an analgesic adjuvant to morphine for pain control, focusing on frontocortical function. METHODS: To assess the analgesic effects of ketamine with or without morphine, we performed behavioral and histochemical experiments, using the hot plate test and c-Fos expression analysis in rats. The effect on cortical function was also determined by prepulse inhibition (PPI) of the acoustic startle and evoked potentials in the hippocampal CA1-medial prefrontal cortex (mPFC) synapses as measures of synaptic efficacy. RESULTS: Coadministration of ketamine as a subanalgesic dose significantly enhanced intraperitoneal morphine-induced antinociceptive response, which was measured as the increased reaction latency in the hot plate test. In addition, the noxious thermal stimulus-induced c-Fos expression in the ventrolateral periaqueductal gray matter was significantly suppressed by concomitant ketamine and morphine. In contrast, the subanalgesic dose of ketamine did not impair PPI and synaptic efficacy in the mPFC. CONCLUSION: The present results indicate that the morphine-induced analgesic effect is enhanced by a concomitant subanalgesic dose of ketamine without affecting cortical function. Our findings possibly support the clinical notion that low-dose ketamine as an analgesic adjuvant has therapeutic potential to reduce opioid dosage, thereby improving the quality of life in cancer pain patients.


Assuntos
Analgésicos/uso terapêutico , Córtex Cerebelar/efeitos dos fármacos , Ketamina/uso terapêutico , Morfina/uso terapêutico , Dor/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Córtex Cerebelar/fisiologia , Relação Dose-Resposta a Droga , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Masculino , Morfina/administração & dosagem , Manejo da Dor/métodos , Ratos , Ratos Wistar
9.
Synapse ; 67(4): 161-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23152167

RESUMO

Fear extinction-based exposure treatment is an important component of psychotherapy for anxiety disorders such as posttraumatic stress disorder (PTSD). Recent studies have focused on pharmacological approaches combined with exposure therapy to augment extinction. In this study, we elucidated the therapeutic potential of the serotonin 1A (5-HT(1A) ) receptor agonist tandospirone compared with the effects of the N-methyl-D-aspartate partial agonist D-cycloserine (DCS), focusing on the possible involvement of dopaminergic mechanisms. We used a rat model of juvenile stress [aversive footshock (FS)] exposure during the third postnatal week (3wFS). The 3wFS group exhibited extinction deficit reflected in sustained fear-related behavior and synaptic dysfunction in the hippocampal CA1 field and medial prefrontal cortex (mPFC), which are responsible for extinction processes. Tandospirone administration (5 mg/kg, i.p.) before and after the extinction trials ameliorated both the behavioral deficit and synaptic dysfunction, i.e., synaptic efficacy in the CA1 field and mPFC associated with extinction training and retrieval, respectively, was potentiated in the tandospirone-treated 3wFS group. Extracellular dopamine release in the mPFC was increased by extinction retrieval in the non-FS control group. This facilitation was not observed in the 3wFS group; however, tandospirone treatment increased cortical dopamine levels after extinction retrieval. DCS (15 mg/kg, i.p.) also ameliorated the extinction deficit in the 3wFS group, but impaired extinction in the non-FS control group. These results suggest that tandospirone has therapeutic potential for enhancing synaptic efficacy associated with extinction processes by involving dopaminergic mechanisms. Pharmacological agents that target cortical dopaminergic systems may provide new insights into the development of therapeutic treatments of anxiety disorders, including PTSD.


Assuntos
Dopamina/metabolismo , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Isoindóis/farmacologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Condicionamento Clássico , Ciclosserina/farmacologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Masculino , Microdiálise , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Transmissão Sináptica/fisiologia
10.
J Pharmacol Sci ; 123(3): 267-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24189655

RESUMO

The present study elucidated the functional role of modulatory effects of basolateral amygdala (BLA) on synaptic transmission in the rat hippocampus-medial prefrontal cortex (mPFC) pathway, compared with the hippocampal dentate gyrus (DG). Exposure to conditioned fear stress (CFS) or prior BLA activation enhanced tetanus-induced long-term potentiation (LTP) in DG. A similar synaptic response was found by low frequency stimulation (LFS) prior to tetanus. In mPFC, they did not affect LTP, but prior BLA activation, as well as pretreatment with the N-methyl-d-aspartate (NMDA)-receptor antagonist MK-801 (0.1 mg/kg, i.p.), suppressed LFS-primed LTP. This BLA-mediated synaptic pattern was mimicked by synaptic changes observed in the fear extinction process; prior BLA activation suppressed the synaptic potentiation responsible for extinction retrieval and attenuated decreases in fear-related freezing behavior. These data suggest that LFS-primed LTP in mPFC is related to the neural basis of extinction. Extinction-related synaptic potentiation did not occur in a juvenile stress model that exhibited extinction deficit. In addition, LFS-primed LTP was suppressed in this model, which was reversed by the NMDA-receptor agonist d-cycloserine (15 mg/kg, i.p.). These findings suggest that modulatory effects of BLA on synaptic function in the hippocampus-mPFC pathway play a significant role in fear extinction in rats.


Assuntos
Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Medo/psicologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Maleato de Dizocilpina/farmacologia , Estimulação Elétrica , Potenciais Evocados , Extinção Psicológica/efeitos dos fármacos , Humanos , Hidrocarbonetos Clorados/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Modelos Animais , Giro Para-Hipocampal/fisiologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estresse Psicológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-25069238

RESUMO

Toll-like receptor (TLR) 7 recognizes viral single-stranded RNA and triggers anti-viral immune responses through the production of type I interferons (IFNs) IFN-alpha and IFN-beta. IFN-alpha is known to induce various psychiatric changes such as depressive symptoms; however, the correlation with TLR7 activation remains to be determined. In this study, we examined the effect of imiquimod, a TLR7 specific ligand, on depressive-like behaviors evaluated by the forced swim test (FST) and the tail suspension test (TST) in mice. Immobility durations were significantly prolonged in both FST and TST by 2 h after imiquimod treatment (50 microg/body, i.p.), indicating that TLR7 activation enhanced depressive-like behaviors in mice. In addition, imiquimod induced IFN-alpha mRNA expression in the hippocampus, whereas it prevented long-term potentiation in the Schaffer-CA1 pathway (i.e., hippocampal synaptic plasticity). Moreover, TLR7 mRNA expression in the hippocampus was higher than that in the whole brain. These findings suggest that TLR7 activation enhances depressive-like behaviors in mice, possibly through increasing IFN-alpha expression and altering synaptic plasticity in the hippocampus.


Assuntos
Aminoquinolinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/metabolismo , Hipocampo/metabolismo , Indutores de Interferon/farmacologia , Glicoproteínas de Membrana/metabolismo , Receptor 7 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Imiquimode , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
12.
Heliyon ; 9(10): e21008, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876479

RESUMO

Introduction: Pulmonary artery smooth muscle cells (PASMCs) play an important role in the sequence of events leading to the formation of pulmonary hypertension (PH). However, little is known about the direct effects of high pressure on the function and intercellular signaling pathways of PASMCs. The aim of this study was to evaluate the effect of pressure stress that simulates PH on interleukin (IL)-1ß- or angiotensin II-induced cyclooxygenase-2 (COX-2) expression in cultured human PASMCs. Methods: Either 20 or 60 mmHg atmospheric pressure was applied to PASMCs by a pressure-loading apparatus. Protein expression and phosphorylation were analyzed by western blotting. mRNA expression was analyzed by quantitative real-time reverse transcription-polymerase chain reaction. Results: IL-1ß-induced COX-2 protein expression peaked at 6 h in non-pressurized cells, whereas COX-2 expression was delayed, peaking at 12 h, in 20 and 60 mmHg pressurized cells. Both pressures also delayed the time to peak COX-2 mRNA expression induced by IL-1ß. In addition, pressure stress delayed the time to peak mitogen-activated protein kinase (MAPK) phosphorylation induced by IL-1ß. In contrast, angiotensin II-induced transient COX-2 mRNA expression and MAPK phosphorylation were not affected by pressure stress. Conclusion: These results suggest that pressure stress delays IL-1ß-induced COX-2 expression via the delayed activation of MAPKs in PASMCs, and the effects of pressure stress differ according to the bioactive substance being stimulated. Our results demonstrate that the application of pressure stress to PASMCs directly alters cell function, which may provide a basic insight into our understanding of the pathogenesis of PH.

13.
Eur J Neurosci ; 35(1): 135-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22171943

RESUMO

The present study elucidated whether early life stress alters the extracellular signal-regulated kinase (ERK) pathway that underlies fear retrieval and fear extinction based on a contextual fear conditioning paradigm, using a juvenile stress model. Levels of phospho-ERK (pERK), the active form of ERK, increased after fear retrieval in the hippocampal CA1 region but not in the medial prefrontal cortex (mPFC). ERK activation in the CA1 following fear retrieval was not observed in adult rats who received aversive footshock (FS) stimuli during the second postnatal period (2wFS), which exhibited low levels of freezing. In fear extinction, pERK levels in the CA1 were increased by repeated extinction trials, but they were not altered after extinction retrieval. In contrast, pERK levels in the mPFC did not change during extinction training, but were enhanced after extinction retrieval. These findings were compatible in part with electrophysiological data showing that synaptic transmission in the CA1 field and mPFC was enhanced during extinction training and extinction retrieval, respectively. ERK activation in the CA1 and mPFC associated with extinction processes did not occur in rats that received FS stimuli during the third postnatal period (3wFS), which exhibited sustained freezing behavior. The repressed ERK signaling and extinction deficit observed in the 3wFS group were ameliorated by treatment with the partial N-methyl-D-aspartate receptor agonist D-cycloserine. These findings suggest that early postnatal stress induced the downregulation of ERK signaling in distinct brain regions through region-specific regulation, which may lead to increased behavioral abnormalities or emotional vulnerabilities in adulthood.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Medo/fisiologia , Sistema Límbico/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Condicionamento Psicológico/fisiologia , Ativação Enzimática , Extinção Psicológica/fisiologia , Hipocampo/metabolismo , Sistema Límbico/anatomia & histologia , Masculino , Vias Neurais/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
14.
Neurobiol Learn Mem ; 97(4): 361-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22415041

RESUMO

Recent studies focus on the functional significance of a novel form of synaptic plasticity, low-frequency stimulation (LFS)-induced synaptic potentiation in the hippocampal CA1 area. In the present study, we elucidated dynamic changes in synaptic function in the CA1 field during extinction processes associated with context-dependent fear memory in freely moving rats, with a focus on LFS-induced synaptic plasticity. Synaptic transmission in the CA1 field was transiently depressed during each extinction trial, but synaptic efficacy was gradually enhanced by repeated extinction trials, accompanied by decreases in freezing. On the day following the extinction training, synaptic transmission did not show further changes during extinction retrieval, suggesting that the hippocampal synaptic transmission that underlies extinction processes changes in a phase-dependent manner. The synaptic potentiation produced by extinction training was mimicked by synaptic changes induced by LFS (0.5 Hz) in the group that previously received footshock conditioning. Furthermore, the expression of freezing during re-exposure to footshock box was significantly reduced in the LFS application group in a manner similar to the extinction group. These results suggest that LFS-induced synaptic plasticity may be associated with the extinction processes that underlie context-dependent fear memory. This hypothesis was supported by the fact that synaptic potentiation induced by extinction training did not occur in a juvenile stress model that exhibited extinction deficits. Given the similarity between these electrophysiological and behavioral data, LFS-induced synaptic plasticity may be related to extinction learning, with some aspects of neuronal oscillations, during the acquisition and/or consolidation of extinction memory.


Assuntos
Região CA1 Hipocampal/fisiologia , Extinção Psicológica/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Estimulação Elétrica , Potenciais Evocados , Medo/fisiologia , Masculino , Ratos , Ratos Wistar
15.
J Pharmacol Sci ; 119(1): 64-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22641128

RESUMO

Several lines of evidence have shown that early life experiences have a profound impact on fear-related behavior, but the detailed mechanisms are unknown. The present study examined the possible involvement of the amygdala in behavioral deficits associated with fear memory in a juvenile stress model, with a focus on hippocampal synaptic function. Adult rats exposed to footshock (FS) stress during the second postnatal period (2wFS group) exhibited low levels of freezing in response to contextual fear conditioning (CFC). The CFC-induced suppression of long-term potentiation (LTP) in the CA1 field was not found in the 2wFS group. Additionally, synaptic metaplasticity, that is, low-frequency stimulation-induced suppression of subsequent LTP, did not occur in the 2wFS group; instead, LTP was induced. These synaptic changes mimicked the impairment in metaplasticity induced by reversible inactivation of the basolateral amygdala (BLA). Inactivation of the BLA markedly decreased freezing behavior in non-FS controls, similar to the 2wFS group. Furthermore, extracellular signal-regulated kinase activation in the BLA in response to CFC did not occur in the 2wFS group. These findings suggest that early postnatal stress may cause long-term dysfunction of the modulatory effect of the amygdala on hippocampal function associated with fear memory.


Assuntos
Tonsila do Cerebelo/fisiologia , Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal/fisiologia , Região CA1 Hipocampal/citologia , Condicionamento Psicológico/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Medo/fisiologia , Potenciação de Longa Duração/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Memória/fisiologia , Vias Neurais/fisiologia , Ratos , Ratos Wistar , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
16.
Eur J Pharmacol ; 923: 174930, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364072

RESUMO

Attention-deficit/hyperactivity disorder (AD/HD) is a mild neurodevelopmental disorder with inattention, hyperactivity, and impulsivity as its core symptoms. We previously revealed that an AD/HD animal model, juvenile stroke-prone spontaneously hypertensive rats (SHRSP/Ezo) exhibited functional abnormalities in N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex. D-serine is an endogenous co-ligand that acts on the glycine-binding site of NMDA receptors, which is essential for the physiological activation of NMDA receptors. We herein performed neurochemical and pharmacological behavioral experiments to elucidate dysfunctions in D-serine metabolism (namely, biosynthesis and catabolism) associated to AD/HD. The serine enantiomers ratio (D-serine/D-serine + L-serine, DL ratio) in the medial prefrontal cortex (mPFC) and hippocampus (HIP) was lower in SHRSP/Ezo than in its genetic control. The level of D-amino acid oxidase (DAAO, D-serine degrading enzyme) was higher in the mPFC, and the level of serine racemase (SR, D-serine biosynthetic enzyme), was lower in the HIP in SHRSP/Ezo. Thus, changes in these enzymes may contribute to the lower DL ratio of SHRSP/Ezo. Moreover, a microinjection of a DAAO inhibitor into the mPFC in SHRSP/Ezo increased DL ratio and attenuated AD/HD-like behaviors, such as inattention and hyperactivity, in the Y-maze test. Injection into the HIP also increased the DL ratio, but had no effect on behaviors. These results suggest that AD/HD-like behaviors in SHRSP/Ezo are associated with an abnormal D-serine metabolism underlying NMDA receptor dysfunction in the mPFC. These results will contribute to elucidating the pathogenesis of AD/HD and the development of new treatment strategies for AD/HD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
17.
Eur J Pharmacol ; 818: 235-240, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29107673

RESUMO

Tranilast is an anti-allergy medication that inhibits the release of chemical mediators such as histamine. However, the mechanisms underlying its anti-allergy effects are not fully understood. Interleukin (IL)-33, a novel member of the IL-1 cytokine family, promotes T helper type 2 immune responses and plays a pathogenic role in allergic disorders. In the present study, we examined the effects of tranilast on IL-33 production by RAW264.7 macrophages. Lipopolysaccharide (LPS) increased both IL-33 mRNA expression and IL-33 protein synthesis. Tranilast significantly inhibited LPS-induced IL-33 protein production by RAW264.7 macrophages in a dose-dependent manner; these same effects were observed on IL-33 mRNA levels in RAW264.7 macrophages and a primary culture of macrophages. LPS markedly activated Akt in RAW264.7 macrophages, whereas tranilast suppressed LPS-induced Akt activation. The effects of tranilast on Akt activation appeared to be responsible for the decrease in IL-33 production. Our present findings suggest that the inhibition of IL-33 production by tranilast might contribute to the anti-allergy effects of this medication.


Assuntos
Interleucina-33/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , ortoaminobenzoatos/farmacologia , Animais , Células da Medula Óssea/citologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-33/genética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Camundongos , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
18.
Neuropsychopharmacol Rep ; 38(2): 61-66, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30106260

RESUMO

AIM: We previously reported that stroke-prone spontaneously hypertensive rat/Ezo (SHRSP/Ezo) has high validity as an attention deficit/hyperactivity disorder (AD/HD) animal model, based on its behavioral phenotypes, such as inattention, hyperactivity, and impulsivity. Fronto-cortical dysfunction is implicated in the pathogenesis of AD/HD. In this study, we investigated prefrontal cortex (PFC) function in SHRSP/Ezo rats by electrophysiological methods and radioreceptor assay. METHODS: We recorded excitatory postsynaptic potential in layer V pyramidal neurons in the PFC by intracellular recording method to assess synaptic plasticity in the form of long-term potentiation (LTP). We also performed N-methyl-d-aspartate acid (NMDA) receptor binding assay in the PFC and hippocampus using radiolabeled NMDA receptor antagonist [3 H]MK-801. RESULTS: Theta-burst stimulation induced LTP in the PFC of genetic control, WKY/Ezo, whereas failed to induce LTP in that of SHRSP/Ezo. The Kd value of [3 H]MK-801 binding for NMDA receptors in the PFC of SHRSP/Ezo was higher than in the WKY/Ezo. Neither the Bmax nor Kd of [3 H]MK-801 binding in the SHRSP/Ezo hippocampus was significantly different to WKY/Ezo. CONCLUSION: These results suggest that the AD/HD animal model SHRSP/Ezo has NMDA receptor dysfunction in the PFC.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Hipertensão/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipertensão/complicações , Potenciação de Longa Duração , Masculino , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
19.
Immunol Lett ; 158(1-2): 109-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24374096

RESUMO

In the present study, we examined the effect of stress-related catecholamines adrenaline and noradrenaline on macrophage expression of a new host defense factor REDD1 using murine macrophage cell line RAW264.7 and murine peritoneal macrophages. Short-term adrenaline exposure (15-60 min) upregulated REDD1 mRNA expression and its protein synthesis in macrophages. This adrenaline-induced REDD1 expression was completely blocked by ß2-adrenoceptor selective antagonist ICI 118,551, whereas ß2-adrenoceptor specific agonist salmeterol markedly enhanced REDD1 expression. Moreover, noradrenaline increased REDD1 mRNA expression at doses higher than the effective doses of adrenaline. The effect of adrenaline on REDD1 mRNA expression was mimicked by treatment with membrane-permeable cAMP analog 8-Br-cAMP. Thus, increased intracellular cAMP level resulting from ß2-adrenoceptor stimulation appeared to be responsible for adrenaline-induced REDD1 mRNA expression. However, inhibiting protein kinase A (PKA) activity had no significant effect on REDD1 mRNA expression after ß2-adrenoceptor stimulation. In addition, exchange protein activated by cAMP (Epac) agonist 8-CPT-20-O-Me-cAMP had no effect on REDD1 mRNA expression. Thus, ß2-adrenoceptor-mediated increase in cAMP levels seems to induce REDD1 mRNA expression in macrophages through a PKA- and Epac-independent pathway.


Assuntos
Epinefrina/farmacologia , Regulação da Expressão Gênica , Macrófagos Peritoneais/efeitos dos fármacos , Norepinefrina/farmacologia , Receptores Adrenérgicos beta/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Albuterol/análogos & derivados , Albuterol/farmacologia , Animais , Linhagem Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Feminino , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Propanolaminas/farmacologia , RNA Mensageiro/genética , Xinafoato de Salmeterol , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Regulação para Cima/efeitos dos fármacos
20.
Immunobiology ; 219(9): 680-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24863408

RESUMO

Transglutaminase 2 (TG2) is a multifunctional protein that contributes to inflammatory disease when aberrantly expressed. Although macrophages express TG2, the factor stimulating TG2 expression remains poorly characterized in these cells. In the present study, we examined the effects of the stress-related catecholamines adrenaline and noradrenaline on macrophage expression of TG2 in RAW264.7 murine macrophages and murine bone marrow-derived macrophages. Treatment with adrenaline markedly increased TG2 mRNA expression and increased TG2 protein levels. While the ß2-adrenoceptor-selective antagonist ICI 118,551 completely blocked adrenaline-induced TG2 mRNA expression, the ß2-adrenoceptor specific agonist salmeterol increased TG2 expression. Noradrenaline also increased TG2 mRNA expression at higher doses than the effective doses of adrenaline. The effect of adrenaline on TG2 mRNA expression was mimicked by treatment with the membrane-permeable cAMP analog 8-Br-cAMP. Thus, increased intracellular cAMP following stimulation of ß2-adrenoceptors appeared to be responsible for adrenaline-induced TG2 expression. Because stress events activate the sympathetic nervous system and result in secretion of the catecholamines, adrenoceptor-mediated increase in macrophage TG2 expression might be associated with stress-related inflammatory disorders.


Assuntos
Epinefrina/metabolismo , Proteínas de Ligação ao GTP/biossíntese , Macrófagos/metabolismo , Norepinefrina/metabolismo , Estresse Fisiológico/imunologia , Transglutaminases/biossíntese , Animais , Células Cultivadas , Epinefrina/farmacologia , Immunoblotting , Macrófagos/efeitos dos fármacos , Camundongos , Norepinefrina/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA