Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasitology ; 146(11): 1379-1386, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31190664

RESUMO

Survival and infectivity of trypanosomatids rely on cell-surface and secreted glycoconjugates, many of which contain a variable number of galactose residues. Incorporation of galactose to proteins and lipids occurs along the secretory pathway from UDP-galactose (UDP-Gal). Before being used in glycosylation reactions, however, this activated sugar donor must first be transported across the endoplasmic reticulum and Golgi membranes by a specific nucleotide sugar transporter (NST). In this study, we identified an UDP-Gal transporter (named TcNST2 and encoded by the TcCLB.504085.60 gene) from Trypanosoma cruzi, the etiological agent of Chagas disease. TcNST2 was identified by heterologous expression of selected putative nucleotide sugar transporters in a mutant Chinese Hamster Ovary cell line. TcNST2 mRNA levels were detected in all T. cruzi life-cycle forms, with an increase in expression in axenic amastigotes. Confocal microscope analysis indicated that the transporter is specifically localized to the Golgi apparatus. A three-dimensional model of TcNST2 suggested an overall structural conservation as compared with members of the metabolite transporter superfamily and also suggested specific features that could be related to its activity. The identification of this transporter is an important step toward a better understanding of glycoconjugate biosynthesis and the role NSTs play in this process in trypanosomatids.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Animais , Células CHO , Cricetulus , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Análise de Sequência de Proteína , Trypanosoma cruzi/metabolismo
2.
Cytometry A ; 93(7): 727-736, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30118574

RESUMO

Trypanosomatid parasites are causative agents of neglected human diseases. Their lineage diverged early from the common eukaryotic ancestor, and they evolved singular mechanisms of gene expression that are crucial for their survival. Studies on unusual and essential molecular pathways lead to new drug targets. In this respect, assays to analyze transcriptional activity will provide useful information to identify essential and specific factors. However, the current methods are laborious and do not provide global and accurate measures. For this purpose, a previously reported radiolabeling in vitro nascent mRNA methodology was used to establish an alternative fluorescent-based assay that is able to precisely quantify nascent mRNA using both flow cytometry and a high-content image system. The method allowed accurate and global measurements in Trypanosoma brucei, a representative species of trypanosomatid parasites. We obtained data demonstrating that approximately 70% of parasites from a population under normal growth conditions displayed mRNA transcriptional activity, whilst the treatment with α-amanitin (75 µg/ml) inhibited the polymerase II activity. The adaptation of the method also allowed the analyses of the transcriptional activity during the cell cycle. Therefore, the methodology described herein contributes to obtaining precise measurements of transcriptional rates using multiparametric analysis. This alternative method can facilitate investigations of genetic and biochemical processes in trypanosome parasites and consequently provide additional information related to new treatment or prophylaxis strategies involving these important human parasites.


Assuntos
Citometria de Fluxo/métodos , Transcrição Gênica , Trypanosoma brucei brucei/genética , Animais , Fluorescência , Humanos , RNA Mensageiro/genética , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologia
3.
Sci Rep ; 9(1): 18512, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811174

RESUMO

The co-synthesis of DNA and RNA potentially generates conflicts between replication and transcription, which can lead to genomic instability. In trypanosomatids, eukaryotic parasites that perform polycistronic transcription, this phenomenon and its consequences are still little studied. Here, we showed that the number of constitutive origins mapped in the Trypanosoma brucei genome is less than the minimum required to complete replication within S-phase duration. By the development of a mechanistic model of DNA replication considering replication-transcription conflicts and using immunofluorescence assays and DNA combing approaches, we demonstrated that the activation of non-constitutive (backup) origins are indispensable for replication to be completed within S-phase period. Together, our findings suggest that transcription activity during S phase generates R-loops, which contributes to the emergence of DNA lesions, leading to the firing of backup origins that help maintain robustness in S-phase duration. The usage of this increased pool of origins, contributing to the maintenance of DNA replication, seems to be of paramount importance for the survival of this parasite that affects million people around the world.


Assuntos
Replicação do DNA , Origem de Replicação , Fase S , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Ciclo Celular , Simulação por Computador , Dano ao DNA , Fase G2 , Instabilidade Genômica , Histonas/metabolismo , Microscopia de Fluorescência , Método de Monte Carlo , Domínios Proteicos , Processos Estocásticos
4.
Acta Trop ; 178: 190-195, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29174293

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of individuals around the world. Although it has been known for more than a century, the study of T. cruzi has been a challenge, particularly due to the scarcity of tools for genome inquiries. Recently, strategies have been described allowing gene disruption in T. cruzi by the CRISPR/Cas9 nuclease system. Although these strategies demonstrated success in deleting some genes, several aspects could be improved to increase the efficiency of the CRISPR/Cas9 system in T. cruzi. Here, we report a strategy, based on adaptations and improvements of the two previously described systems, that results in efficient gene disruption that can be applied to any target, including the study of essential genes.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética/métodos , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA