Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624217

RESUMO

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Mitose , Células Neoplásicas Circulantes/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Indóis/farmacologia , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Mitose/efeitos dos fármacos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenilacetatos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estruturas R-Loop , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Elongação da Transcrição Genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nucleic Acids Res ; 50(6): 3551-3564, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35286377

RESUMO

CRISPR/Cas base editors promise nucleotide-level control over DNA sequences, but the determinants of their activity remain incompletely understood. We measured base editing frequencies in two human cell lines for two cytosine and two adenine base editors at ∼14 000 target sequences and find that base editing activity is sequence-biased, with largest effects from nucleotides flanking the target base. Whether a base is edited depends strongly on the combination of its position in the target and the preceding base, acting to widen or narrow the effective editing window. The impact of features on editing rate depends on the position, with sequence bias efficacy mainly influencing bases away from the center of the window. We use these observations to train a machine learning model to predict editing activity per position, with accuracy ranging from 0.49 to 0.72 between editors, and with better generalization across datasets than existing tools. We demonstrate the usefulness of our model by predicting the efficacy of disease mutation correcting guides, and find that most of them suffer from more unwanted editing than pure outcomes. This work unravels the position-specificity of base editing biases and allows more efficient planning of editing campaigns in experimental and therapeutic contexts.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Adenina , Citosina/metabolismo , Humanos , Nucleotídeos
3.
Proc Natl Acad Sci U S A ; 115(10): 2467-2472, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453278

RESUMO

A subset of patients with metastatic melanoma have sustained remissions following treatment with immune checkpoint inhibitors. However, analyses of pretreatment tumor biopsies for markers predictive of response, including PD-1 ligand (PD-L1) expression and mutational burden, are insufficiently precise to guide treatment selection, and clinical radiographic evidence of response on therapy may be delayed, leading to some patients receiving potentially ineffective but toxic therapy. Here, we developed a molecular signature of melanoma circulating tumor cells (CTCs) to quantify early tumor response using blood-based monitoring. A quantitative 19-gene digital RNA signature (CTC score) applied to microfluidically enriched CTCs robustly distinguishes melanoma cells, within a background of blood cells in reconstituted and in patient-derived (n = 42) blood specimens. In a prospective cohort of 49 patients treated with immune checkpoint inhibitors, a decrease in CTC score within 7 weeks of therapy correlates with marked improvement in progression-free survival [hazard ratio (HR), 0.17; P = 0.008] and overall survival (HR, 0.12; P = 0.04). Thus, digital quantitation of melanoma CTC-derived transcripts enables serial noninvasive monitoring of tumor burden, supporting the rational application of immune checkpoint inhibition therapies.


Assuntos
Antineoplásicos Imunológicos , Biomarcadores Tumorais/sangue , Melanoma , Células Neoplásicas Circulantes , Neoplasias Cutâneas , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/química , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Humanos , Estimativa de Kaplan-Meier , Biópsia Líquida , Masculino , Melanoma/sangue , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Melanoma/mortalidade , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/efeitos dos fármacos , RNA/análise , RNA/genética , RNA/metabolismo , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade
4.
Proc Natl Acad Sci U S A ; 114(5): 1123-1128, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096363

RESUMO

Circulating tumor cells (CTCs) are shed into the bloodstream by invasive cancers, but the difficulty inherent in identifying these rare cells by microscopy has precluded their routine use in monitoring or screening for cancer. We recently described a high-throughput microfluidic CTC-iChip, which efficiently depletes hematopoietic cells from blood specimens and enriches for CTCs with well-preserved RNA. Application of RNA-based digital PCR to detect CTC-derived signatures may thus enable highly accurate tissue lineage-based cancer detection in blood specimens. As proof of principle, we examined hepatocellular carcinoma (HCC), a cancer that is derived from liver cells bearing a unique gene expression profile. After identifying a digital signature of 10 liver-specific transcripts, we used a cross-validated logistic regression model to identify the presence of HCC-derived CTCs in nine of 16 (56%) untreated patients with HCC versus one of 31 (3%) patients with nonmalignant liver disease at risk for developing HCC (P < 0.0001). Positive CTC scores declined in treated patients: Nine of 32 (28%) patients receiving therapy and only one of 15 (7%) patients who had undergone curative-intent ablation, surgery, or liver transplantation were positive. RNA-based digital CTC scoring was not correlated with the standard HCC serum protein marker alpha fetoprotein (P = 0.57). Modeling the sequential use of these two orthogonal markers for liver cancer screening in patients with high-risk cirrhosis generates positive and negative predictive values of 80% and 86%, respectively. Thus, digital RNA quantitation constitutes a sensitive and specific CTC readout, enabling high-throughput clinical applications, such as noninvasive screening for HCC in populations where viral hepatitis and cirrhosis are prevalent.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/diagnóstico , Separação Celular/métodos , Detecção Precoce de Câncer/métodos , Ensaios de Triagem em Larga Escala , Neoplasias Hepáticas/diagnóstico , Células Neoplásicas Circulantes , RNA Mensageiro/sangue , RNA Neoplásico/sangue , Transcriptoma , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Linhagem da Célula , Separação Celular/instrumentação , Células Hep G2 , Hepatite B Crônica/sangue , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Dispositivos Lab-On-A-Chip , Cirrose Hepática/sangue , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Modelos Logísticos , Lesões Pré-Cancerosas/sangue , Valor Preditivo dos Testes , Análise de Sequência de RNA/instrumentação , Análise de Sequência de RNA/métodos , Análise de Célula Única
5.
Genome Med ; 15(1): 78, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821946

RESUMO

BACKGROUND: Genetic suppression occurs when the deleterious effects of a primary "query" mutation, such as a disease-causing mutation, are rescued by a suppressor mutation elsewhere in the genome. METHODS: To capture existing knowledge on suppression relationships between human genes, we examined 2,400 published papers for potential interactions identified through either genetic modification of cultured human cells or through association studies in patients. RESULTS: The resulting network encompassed 476 unique suppression interactions covering a wide spectrum of diseases and biological functions. The interactions frequently linked genes that operate in the same biological process. Suppressors were strongly enriched for genes with a role in stress response or signaling, suggesting that deleterious mutations can often be buffered by modulating signaling cascades or immune responses. Suppressor mutations tended to be deleterious when they occurred in absence of the query mutation, in apparent contrast with their protective role in the presence of the query. We formulated and quantified mechanisms of genetic suppression that could explain 71% of interactions and provided mechanistic insight into disease pathology. Finally, we used these observations to predict suppressor genes in the human genome. CONCLUSIONS: The global suppression network allowed us to define principles of genetic suppression that were conserved across diseases, model systems, and species. The emerging frequency of suppression interactions among human genes and range of underlying mechanisms, together with the prevalence of suppression in model organisms, suggest that compensatory mutations may exist for most genetic diseases.


Assuntos
Genoma Humano , Supressão Genética , Humanos , Mutação , Modelos Biológicos , Genética Humana
6.
Biomater Sci ; 11(21): 7169-7178, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37734448

RESUMO

The quest for new therapeutic treatments for hereditary diseases has led to many advances in RNA interference (RNAi) and gene silencing. While this technique has the potential to address many problems, the key to its continued use is the development of effective delivery strategies that would reduce cellular toxicity and increase silencing efficiency. Rosette nanotubes (RNTs) are biomimetic supramolecular nanostructures formed through the self-assembly of hybrid guanine-cytosine (G∧C) DNA bases. Here, we used bioactive RNTs for siRNA delivery and gene silencing. Fifteen lysine-functionalized twin-G∧C motifs (KnT, n = 1 to 15) were synthesized using solid phase peptide synthesis to produce building blocks that self-assembled to produce cationic RNTs under physiological conditions. The intracellular uptake of siRNA delivered by the oligo-L-lysine RNTs was examined and it was found that the complexation of siRNA was affected by the cationic charges from the lysine residues and the length of RNTs formed, with the higher charged KnT RNTs delivering siRNA to the cells at a faster rate. In addition, by protecting siRNA from serum degradation, KnT RNTs were shown to deliver their cargo to the cells effectively via the endocytic pathway. A reduction in the expression (∼70%) of the target stat3 protein was observed during gene expression analysis in HCT116 and A549 cell lines.

7.
Adv Mater Technol ; 8(16)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283881

RESUMO

Microfluidic devices have been used for decades to isolate cells, viruses, and proteins using on-chip immunoaffinity capture using biotinylated antibodies, proteins, or aptamers. To accomplish this, the inner surface is modified to present binding moieties for the desired analyte. While this approach has been successful in research settings, it is challenging to scale many surface modification strategies. Traditional polydimethylsiloxane (PDMS) devices can be effectively functionalized using silane-based methods; however, it requires high labor hours, cleanroom equipment, and hazardous chemicals. Manufacture of microfluidic devices using plastics, including cyclic olefin copolymer (COC), allows chips to be mass produced, but most functionalization methods used with PDMS are not compatible with plastic. Here we demonstrate how to deposit biotin onto the surface of a plastic microfluidic chips using aryl-diazonium. This method chemically bonds biotin to the surface, allowing for the addition of streptavidin nanoparticles to the surface. Nanoparticles increase the surface area of the chip and allow for proper capture moiety orientation. Our process is faster, can be performed outside of a fume hood, is very cost-effective using readily available laboratory equipment, and demonstrates higher rates of capture. Additionally, our method allows for more rapid and scalable production of devices, including for diagnostic testing.

8.
Cancer Res ; 82(6): 1084-1097, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35045985

RESUMO

Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE: Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.


Assuntos
Neoplasias da Próstata , Proteômica , Animais , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
9.
PLoS One ; 16(5): e0251290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983964

RESUMO

Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47-52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield.


Assuntos
Vesículas Extracelulares/metabolismo , RNA/isolamento & purificação , Manejo de Espécimes/métodos , Criopreservação/métodos , Meios de Cultura/química , Voluntários Saudáveis , Humanos , Plasma/química , RNA/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/fisiologia
10.
PLoS One ; 14(3): e0210940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840628

RESUMO

Biosensors have emerged as a valuable tool with high specificity and sensitivity for fast and reliable detection of hazardous substances in drinking water. Numerous substances have been addressed using synthetic biology approaches. However, many proposed biosensors are based on living, genetically modified organisms and are therefore limited in shelf life, usability and biosafety. We addressed these issues by the construction of an extensible, cell-free biosensor. Storage is possible through freeze drying on paper. Following the addition of an aqueous sample, a highly efficient cell-free protein synthesis (CFPS) reaction is initiated. Specific allosteric transcription factors modulate the expression of 'superfolder' green fluorescent protein (sfGFP) depending on the presence of the substance of interest. The resulting fluorescence intensities are analyzed with a conventional smartphone accompanied by simple and cheap light filters. An ordinary differential equitation (ODE) model of the biosensors was developed, which enabled prediction and optimization of performance. With an optimized cell-free biosensor based on the Shigella flexneri MerR transcriptional activator, detection of 6 µg/L Hg(II) ions in water was achieved. Furthermore, a completely new biosensor for the detection of gamma-hydroxybutyrate (GHB), a substance used as date-rape drug, was established by employing the naturally occurring transcriptional repressor BlcR from Agrobacterium tumefaciens.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Fluorescência Verde/análise , Hidroxibutiratos/análise , Drogas Ilícitas/análise , Metais Pesados/análise , Detecção do Abuso de Substâncias/métodos , Poluentes Químicos da Água/análise , Sistema Livre de Células , Humanos , Estupro/diagnóstico
11.
Cancer Discov ; 8(10): 1286-1299, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104333

RESUMO

The multiplicity of new therapies for breast cancer presents a challenge for treatment selection. We describe a 17-gene digital signature of breast circulating tumor cell (CTC)-derived transcripts enriched from blood, enabling high-sensitivity early monitoring of response. In a prospective cohort of localized breast cancer, an elevated CTC score after three cycles of neoadjuvant therapy is associated with residual disease at surgery (P = 0.047). In a second prospective cohort with metastatic breast cancer, baseline CTC score correlates with overall survival (P = 0.02), as does persistent CTC signal after 4 weeks of treatment (P = 0.01). In the subset with estrogen receptor (ER)-positive disease, failure to suppress ER signaling within CTCs after 3 weeks of endocrine therapy predicts early progression (P = 0.008). Drug-refractory ER signaling within CTCs overlaps partially with presence of ESR1 mutations, pointing to diverse mechanisms of acquired endocrine drug resistance. Thus, CTC-derived digital RNA signatures enable noninvasive pharmacodynamic measurements to inform therapy in breast cancer.Significance: Digital analysis of RNA from CTCs interrogates treatment responses of both localized and metastatic breast cancer. Quantifying CTC-derived ER signaling during treatment identifies patients failing to respond to ER suppression despite having functional ESR1. Thus, noninvasive scoring of CTC-RNA signatures may help guide therapeutic choices in localized and advanced breast cancer. Cancer Discov; 8(10); 1286-99. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1195.


Assuntos
Neoplasias da Mama/genética , Células Neoplásicas Circulantes/metabolismo , RNA/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia
12.
Cancer Discov ; 8(3): 288-303, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301747

RESUMO

Blood-based biomarkers are critical in metastatic prostate cancer, where characteristic bone metastases are not readily sampled, and they may enable risk stratification in localized disease. We established a sensitive and high-throughput strategy for analyzing prostate circulating tumor cells (CTC) using microfluidic cell enrichment followed by digital quantitation of prostate-derived transcripts. In a prospective study of 27 patients with metastatic castration-resistant prostate cancer treated with first-line abiraterone, pretreatment elevation of the digital CTCM score identifies a high-risk population with poor overall survival (HR = 6.0; P = 0.01) and short radiographic progression-free survival (HR = 3.2; P = 0.046). Expression of HOXB13 in CTCs identifies 6 of 6 patients with ≤12-month survival, with a subset also expressing the ARV7 splice variant. In a second cohort of 34 men with localized prostate cancer, an elevated preoperative CTCL score predicts microscopic dissemination to seminal vesicles and/or lymph nodes (P < 0.001). Thus, digital quantitation of CTC-specific transcripts enables noninvasive monitoring that may guide treatment selection in both metastatic and localized prostate cancer.Significance: There is an unmet need for biomarkers to guide prostate cancer therapies, for curative treatment of localized cancer and for application of molecularly targeted agents in metastatic disease. Digital quantitation of prostate CTC-derived transcripts in blood specimens is predictive of abiraterone response in metastatic cancer and of early dissemination in localized cancer. Cancer Discov; 8(3); 288-303. ©2018 AACR.See related commentary by Heitzer and Speicher, p. 269This article is highlighted in the In This Issue feature, p. 253.


Assuntos
Androstenos/farmacologia , Biomarcadores Tumorais/genética , Células Neoplásicas Circulantes/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , RNA Neoplásico/genética , Idoso , Estudos de Casos e Controles , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/efeitos dos fármacos , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Neoplásico/análise , Receptores Androgênicos/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA