Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14352, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38115188

RESUMO

Despite the importance of virulence in epidemiological theory, the relative contributions of host and parasite to virulence outcomes remain poorly understood. Here, we use reciprocal cross experiments to disentangle the influence of host and parasite on core virulence components-infection and pathology-and understand dramatic differences in parasite-induced malformations in California amphibians. Surveys across 319 populations revealed that amphibians' malformation risk was 2.7× greater in low-elevation ponds, even while controlling for trematode infection load. Factorial experiments revealed that parasites from low-elevation sites induced higher per-parasite pathology (reduced host survival and growth), whereas there were no effects of host source on resistance or tolerance. Parasite populations also exhibited marked differences in within-host distribution: ~90% of low-elevation cysts aggregated around the hind limbs, relative to <60% from high-elevation. This offers a novel, mechanistic basis for regional variation in parasite-induced malformations while promoting a framework for partitioning host and parasite contributions to virulence.


Assuntos
Parasitos , Trematódeos , Infecções por Trematódeos , Animais , Virulência , Interações Hospedeiro-Parasita , Infecções por Trematódeos/parasitologia , Anfíbios/parasitologia
2.
J Anim Ecol ; 91(1): 35-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543447

RESUMO

Predation on parasites is a common interaction with multiple, concurrent outcomes. Free-living stages of parasites can comprise a large portion of some predators' diets and may be important resources for population growth. Predation can also reduce the density of infectious agents in an ecosystem, with resultant decreases in infection rates. While predator-parasite interactions likely vary with parasite transmission strategy, few studies have examined how variation in transmission mode influences contact rates with predators and the associated changes in consumption risk. To understand how transmission mode mediates predator-parasite interactions, we examined associations between an oligochaete predator Chaetogaster limnaei that lives commensally on freshwater snails and nine trematode taxa that infect snails. Chaetogaster is hypothesized to consume active (i.e. mobile), free-living stages of trematodes that infect snails (miracidia), but not the passive infectious stages (eggs); it could thus differentially affect transmission and infection prevalence of parasites, including those with medical or veterinary importance. Alternatively, when infection does occur, Chaetogaster can consume and respond numerically to free-living trematode stages released from infected snails (cercariae). These two processes lead to contrasting predictions about whether Chaetogaster and trematode infection of snails correlate negatively ('protective predation') or positively ('predator augmentation'). Here, we tested how parasite transmission mode affected Chaetogaster-trematode relationships using data from 20,759 snails collected across 4 years from natural ponds in California. Based on generalized linear mixed modelling, snails with more Chaetogaster were less likely to be infected by trematodes that rely on active transmission. Conversely, infections by trematodes with passive infectious stages were positively associated with per-snail Chaetogaster abundance. Our results suggest that trematode transmission mode mediates the net outcome of predation on parasites. For trematodes with active infectious stages, predatory Chaetogaster limited the risk of snail infection and its subsequent pathology (i.e. castration). For taxa with passive infectious stages, no such protective effect was observed. Rather, infected snails were associated with higher Chaetogaster abundance, likely owing to the resource subsidy provided by cercariae. These findings highlight the ecological and epidemiological importance of predation on free-living stages while underscoring the influence of parasite life history in shaping such interactions.


Assuntos
Parasitos , Trematódeos , Infecções por Trematódeos , Animais , Cercárias , Ecossistema , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA