Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(8): 2736-2749, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37233025

RESUMO

Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.


Assuntos
Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ceras/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881796

RESUMO

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Assuntos
Produtos Agrícolas , Gravitropismo , Hordeum , Proteínas de Plantas , Raízes de Plantas , Parede Celular/química , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Gravitropismo/genética , Hordeum/química , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Microscopia de Força Atômica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica
3.
BMC Genomics ; 25(1): 79, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243200

RESUMO

BACKGROUND: Drought poses a major threat to agricultural production and thus food security. Understanding the processes shaping plant responses to water deficit is essential for global food safety. Though many studies examined the effect of water deficit on the whole-root level, the distinct functions of each root zone and their specific stress responses remain masked by this approach. RESULTS: In this study, we investigated the effect of water deficit on root development of the spring barley (Hordeum vulgare L.) cultivar Morex and examined transcriptomic responses at the level of longitudinal root zones. Water deficit significantly reduced root growth rates after two days of treatment. RNA-sequencing revealed root zone and temporal gene expression changes depending on the duration of water deficit treatment. The majority of water deficit-regulated genes were unique for their respective root zone-by-treatment combination, though they were associated with commonly enriched gene ontology terms. Among these, we found terms associated with transport, detoxification, or cell wall formation affected by water deficit. Integration of weighted gene co-expression analyses identified differential hub genes, that highlighted the importance of modulating energy and protein metabolism and stress response. CONCLUSION: Our findings provide new insights into the highly dynamic and spatiotemporal response cascade triggered by water deficit and the underlying genetic regulations on the level of root zones in the barley cultivar Morex, providing potential targets to enhance plant resilience against environmental constraints. This study further emphasizes the importance of considering spatial and temporal resolution when examining stress responses.


Assuntos
Hordeum , Água , Água/metabolismo , Hordeum/metabolismo , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Secas
4.
New Phytol ; 243(5): 1936-1950, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973063

RESUMO

The antagonistic interplay between phosphorus (P) and zinc (Zn) in plants is well established. However, the molecular mechanisms mediating those interactions as influenced by arbuscular mycorrhizal (AM) symbiosis remain unclear. We investigated Zn concentrations, root AM symbiosis, and transcriptome profiles of maize roots grown under field conditions upon different P levels. We also validated genotype-dependent P-Zn uptake in selected genotypes from a MAGIC population and conducted mycorrhizal inoculation experiments using mycorrhizal-defective mutant pht1;6 to elucidate the significance of AM symbiosis in P-Zn antagonism. Finally, we assessed how P supply affects Zn transporters and Zn uptake in extraradical hyphae within a three-compartment system. Elevated P levels led to a significant reduction in maize Zn concentration across the population, correlating with a marked decline in AM symbiosis, thus elucidating the P-Zn antagonism. We also identified ZmPht1;6 is crucial for AM symbiosis and confirmed that P-Zn antagonistic uptake is dependent on AM symbiosis. Moreover, we found that high P suppressed the expression of the fungal RiZRT1 and RiZnT1 genes, potentially impacting hyphal Zn uptake. We conclude that high P exerts systemic regulation over root and AM hyphae-mediated Zn uptake in maize. These findings hold implications for breeding Zn deficiency-tolerant maize varieties.


Assuntos
Regulação da Expressão Gênica de Plantas , Micorrizas , Fósforo , Solo , Simbiose , Zea mays , Zinco , Zea mays/microbiologia , Zea mays/metabolismo , Zea mays/genética , Micorrizas/fisiologia , Zinco/metabolismo , Fósforo/metabolismo , Solo/química , Transporte Biológico , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hifas , Genótipo , Mutação/genética
5.
J Exp Bot ; 75(8): 2299-2312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301663

RESUMO

Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.


Assuntos
Técnicas Biossensoriais , Hordeum , Citosol/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estresse Fisiológico , Oxirredução , Glutationa/metabolismo , Técnicas Biossensoriais/métodos
6.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446550

RESUMO

The root growth angle defines how roots grow toward the gravity vector and is among the most important determinants of root system architecture. It controls water uptake capacity, nutrient use efficiency, stress resilience, and, as a consequence, yield of crop plants. We demonstrated that the egt2 (enhanced gravitropism 2) mutant of barley exhibits steeper root growth of seminal and lateral roots and an auxin-independent higher responsiveness to gravity compared to wild-type plants. We cloned the EGT2 gene by a combination of bulked-segregant analysis and whole genome sequencing. Subsequent validation experiments by an independent CRISPR/Cas9 mutant allele demonstrated that egt2 encodes a STERILE ALPHA MOTIF domain-containing protein. In situ hybridization experiments illustrated that EGT2 is expressed from the root cap to the elongation zone. We demonstrated the evolutionary conserved role of EGT2 in root growth angle control between barley and wheat by knocking out the EGT2 orthologs in the A and B genomes of tetraploid durum wheat. By combining laser capture microdissection with RNA sequencing, we observed that seven expansin genes were transcriptionally down-regulated in the elongation zone. This is consistent with a role of EGT2 in this region of the root where the effect of gravity sensing is executed by differential cell elongation. Our findings suggest that EGT2 is an evolutionary conserved regulator of root growth angle in barley and wheat that could be a valuable target for root-based crop improvement strategies in cereals.


Assuntos
Gravitropismo , Hordeum/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Motivo Estéril alfa , Triticum/fisiologia , Parede Celular/metabolismo , Sequência Conservada , Evolução Molecular , Técnicas de Inativação de Genes , Genes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
7.
Bioinformatics ; 38(3): 837-838, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586393

RESUMO

MOTIVATION: Insertional mutagenesis allows for the creation of loss-of-function mutations on a genome-wide scale. In theory, every gene can be 'knocked out' via the insertion of an additional DNA sequence. Resources of sequence-indexed mutants of plant and animal model organisms are instrumental for functional genomics studies. Such repositories significantly speed up the acquisition of interesting genotypes and allow for the validation of hypotheses regarding phenotypic consequences in reverse genetics. To create such resources, comprehensive sequencing of flanking sequence tags using protocols such as Mutant-seq requires various downstream computational tasks, and these need to be performed in an efficient and reproducible manner. RESULTS: Here, we present MuWU, an automated Mutant-seq workflow utility initially created for the identification of Mutator insertion sites of the BonnMu resource, representing a reverse genetics mutant collection for functional genetics in maize (Zea mays). MuWU functions as a fast, one-stop downstream processing pipeline of Mutant-seq reads. It takes care of all complex bioinformatic tasks, such as identifying tagged genes and differentiating between germinal and somatic mutations/insertions. Furthermore, MuWU automatically assigns insertions to the corresponding mutated seed stocks. We discuss the implementation and how parameters can easily be adapted to use MuWU for other species/transposable elements. AVAILABILITY AND IMPLEMENTATION: MuWU is a Snakemake-based workflow and freely available at https://github.com/tgstoecker/MuWU. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Elementos de DNA Transponíveis , Genômica , Animais , Mutagênese Insercional , Genômica/métodos , Mutação , Biblioteca Gênica , Zea mays/genética
8.
New Phytol ; 237(6): 2196-2209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604847

RESUMO

Root gravitropism includes gravity perception in the root cap, signal transduction between root cap and elongation zone, and curvature response in the elongation zone. The barley (Hordeum vulgare) mutant enhanced gravitropism 2 (egt2) displays a hypergravitropic root phenotype. We compared the transcriptomic reprogramming of the root cap, the meristem, and the elongation zone of wild-type (WT) and egt2 seminal roots upon gravistimulation in a time-course experiment and identified direct interaction partners of EGT2 by yeast-two-hybrid screening and bimolecular fluorescence complementation validation. We demonstrated that the elongation zone is subjected to most transcriptomic changes after gravistimulation. Here, 33% of graviregulated genes are also transcriptionally controlled by EGT2, suggesting a central role of this gene in controlling the molecular networks associated with gravitropic bending. Gene co-expression analyses suggested a role of EGT2 in cell wall and reactive oxygen species-related processes, in which direct interaction partners of EGT2 regulated by EGT2 and gravity might be involved. Taken together, this study demonstrated the central role of EGT2 and its interaction partners in the networks controlling root zone-specific transcriptomic reprogramming of barley roots upon gravistimulation. These findings can contribute to the development of novel root idiotypes leading to improved crop performance.


Assuntos
Gravitropismo , Hordeum , Gravitropismo/genética , Hordeum/genética , Raízes de Plantas , Gravitação , Meristema
9.
New Phytol ; 237(4): 1204-1214, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345913

RESUMO

In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.


Assuntos
Ubiquitina-Proteína Ligases , Zea mays , Zea mays/genética , Zea mays/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Meristema/metabolismo
10.
Plant Physiol ; 189(3): 1625-1638, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35522211

RESUMO

The dominance model of heterosis explains the superior performance of F1-hybrids via the complementation of deleterious alleles by beneficial alleles in many genes. Genes active in one parent but inactive in the second lead to single-parent expression (SPE) complementation in maize (Zea mays L.) hybrids. In this study, SPE complementation resulted in approximately 700 additionally active genes in different tissues of genetically diverse maize hybrids on average. We established that the number of SPE genes is significantly associated with mid-parent heterosis (MPH) for all surveyed phenotypic traits. In addition, we highlighted that maternally (SPE_B) and paternally (SPE_X) active SPE genes enriched in gene co-expression modules are highly correlated within each SPE type but separated between these two SPE types. While SPE_B-enriched co-expression modules are positively correlated with phenotypic traits, SPE_X-enriched modules displayed a negative correlation. Gene ontology term enrichment analyses indicated that SPE_B patterns are associated with growth and development, whereas SPE_X patterns are enriched in defense and stress response. In summary, these results link the degree of phenotypic MPH to the prevalence of gene expression complementation observed by SPE, supporting the notion that hybrids benefit from SPE complementation via its role in coordinating maize development in fluctuating environments.


Assuntos
Vigor Híbrido , Zea mays , Alelos , Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Hibridização Genética
11.
Theor Appl Genet ; 136(8): 173, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474870

RESUMO

KEY MESSAGE: Heterosis is already manifested early in root development. Consistent with the dominance model of heterosis, gene expression complementation is a general mechanism that contributes to phenotypic heterosis in maize hybrids. Highly heterozygous F1-hybrids outperform their parental inbred lines, a phenomenon known as heterosis. Utilization of heterosis is of paramount agricultural importance and has been widely applied to increase yield in many crop cultivars. Plant roots display heterosis for many traits and are an important target for further crop improvement. To explain the molecular basis of heterosis, several genetic hypotheses have been proposed. In recent years, high-throughput gene expression profiling techniques have been applied to investigate hybrid vigor. Consistent with the classical genetic dominance model, gene expression complementation has been demonstrated to be a general mechanism to contribute to phenotypic heterosis in diverse maize hybrids. Functional classification of these genes supported the notion that gene expression complementation can dynamically promote hybrid vigor under fluctuating environmental conditions. Hybrids tend to respond differently to available nutrients in the soil. It was hypothesized that hybrid vigor is promoted through a higher nutrient use efficiency which is linked to an improved root system performance of hybrids in comparison to their inbred parents. Recently, the interaction between soil microbes and their plant host was added as further dimension to disentangle heterosis in the belowground part of plants. Soil microbes influenced the performance of maize hybrids as illustrated in comparisons of sterile soil and soil inhabited by beneficial microorganisms.


Assuntos
Grão Comestível , Vigor Híbrido , Grão Comestível/genética , Rizosfera , Perfilação da Expressão Gênica , Fenótipo , Hibridização Genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas
12.
Physiol Plant ; 174(4): e13735, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35716005

RESUMO

The plant cuticle, which covers all aerial parts of plants in their primary developmental stage, is the major barrier against water loss from leaves. Accumulation of cutin and waxes has often been linked to drought tolerance. Here we investigated whether cutin and waxes play a role in the drought adaption of barley mimicked by osmotic stress acting on roots. We compared the cuticle properties of cultivated barley (Hordeum vulgare spp. vulgare) with wild barley (Hordeum vulgare spp. spontaneum), and tested whether wax and cutin composition or amount and cuticular transpiration could be future breeding targets for more drought-tolerant barley lines. In response to osmotic stress, accumulation of wax crystals was observed. This coincides with an increased wax and cutin gene expression and a total increase of wax and cutin amounts in leaves, which seems to be a general response triggered through root shoot signalling. Stomatal conductance decreased fast and significantly, whereas cuticular conductance remained unaffected in both wild and cultivated barley. The often-made conclusion that higher amounts of wax and cutin necessarily reduce cuticular transpiration and thus enhance drought tolerance is not always straightforward. To prevent water loss, stomatal regulation under water stress is much more important than regulation or adaptation of cuticular transpiration in response to drought.


Assuntos
Hordeum , Secas , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Lipídeos de Membrana , Pressão Osmótica , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Ceras/metabolismo
13.
Plant Physiol ; 182(2): 977-991, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740504

RESUMO

Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS) requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD), a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize (Zea mays) and sorghum (Sorghum bicolor), which consisted of 369 and 294 genotypes, respectively. Six RSA-traits were extracted from images collected from >3,300 maize roots and >1,470 sorghum roots. Single nucleotide polymorphism (SNP)-based GWAS identified 87 TAS (trait-associated SNPs) in maize, representing 77 genes and 115 TAS in sorghum. An additional 62 RSA-associated maize genes were identified via expression read depth GWAS. Among the 139 maize RSA-associated genes (or their homologs), 22 (16%) are known to affect RSA in maize or other species. In addition, 26 RSA-associated genes are coregulated with genes previously shown to affect RSA and 51 (37% of RSA-associated genes) are themselves transe-quantitative trait locus for another RSA-associated gene. Finally, the finding that RSA-associated genes from maize and sorghum included seven pairs of syntenic genes demonstrates the conservation of regulation of morphology across taxa.


Assuntos
Variação Biológica da População/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Sorghum/genética , Zea mays/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Genótipo , Processamento de Imagem Assistida por Computador , Fenótipo , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Software , Sorghum/anatomia & histologia , Sorghum/metabolismo , Zea mays/anatomia & histologia , Zea mays/metabolismo
14.
Plant Physiol ; 184(2): 620-631, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32769162

RESUMO

Sequence-indexed insertional libraries in maize (Zea mays) are fundamental resources for functional genetics studies. Here, we constructed a Mutator (Mu) insertional library in the B73 inbred background designated BonnMu A total of 1,152 Mu-tagged F2-families were sequenced using the Mu-seq approach. We detected 225,936 genomic Mu insertion sites and 41,086 high quality germinal Mu insertions covering 16,392 of the annotated maize genes (37% of the B73v4 genome). On average, each F2-family of the BonnMu libraries captured 37 germinal Mu insertions in genes of the Filtered Gene Set (FGS). All BonnMu insertions and phenotypic seedling photographs of Mu-tagged F2-families can be accessed via MaizeGDB.org Downstream examination of 137,410 somatic and germinal insertion sites revealed that 50% of the tagged genes have a single hotspot, targeted by Mu By comparing our BonnMu (B73) data to the UniformMu (W22) library, we identified conserved insertion hotspots between different genetic backgrounds. Finally, the vast majority of BonnMu and UniformMu transposons was inserted near the transcription start site of genes. Remarkably, 75% of all BonnMu insertions were in closer proximity to the transcription start site (distance: 542 bp) than to the start codon (distance: 704 bp), which corresponds to open chromatin, especially in the 5' region of genes. Our European sequence-indexed library of Mu insertions provides an important resource for functional genetics studies of maize.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Mutagênese Insercional , Mutação , Zea mays/genética , Elementos de DNA Transponíveis , Genômica , Transposases
15.
J Exp Bot ; 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34270744

RESUMO

Cold stress adversely affects plant growth and is a limiting factor in crop productivity. Temperature volatility as a consequence of climate change will increase the effects of cold stress on crop cultivation. Low temperatures frequently occur early after planting in temperate climates and severely affect root development in cereals. In this review we address the question how cereal root systems respond to cold on different scales. First, we summarize the morphological, physiological and cellular responses of cereal roots to cold stress and how these processes are regulated by phytohormones. Subsequently, we highlight the status of the genetic and molecular dissection of cold tolerance with emphasis on the role of cold-responsive genes in improving cold tolerance in cereal roots. Finally, we discuss the role of beneficial microorganisms and mineral nutrients in ameliorating the effects of cold stress in cereal roots. A comprehensive knowledge of the molecular mechanisms underlying cold tolerance will ensure yield stability by enabling the generation of cold-tolerant crop genotypes.

16.
BMC Genomics ; 21(1): 300, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293268

RESUMO

BACKGROUND: Low temperatures decrease the capacity for biomass production and lead to growth retardation up to irreversible cellular damage in modern maize cultivars. European flint landraces are an untapped genetic resource for genes and alleles conferring cold tolerance which they acquired during their adaptation to the agroecological conditions in Europe. RESULTS: Based on a phenotyping experiment of 276 doubled haploid lines derived from the European flint landrace "Petkuser Ferdinand Rot" diverging for cold tolerance, we selected 21 of these lines for an RNA-seq experiment. The different genotypes showed highly variable transcriptomic responses to cold. We identified 148, 3254 and 563 genes differentially expressed with respect to cold treatment, cold tolerance and growth rate at cold, respectively. Gene ontology (GO) term enrichment demonstrated that the detoxification of reactive oxygen species is associated with cold tolerance, whereas amino acids might play a crucial role as antioxidant precursors and signaling molecules. CONCLUSION: Doubled haploids representing a European maize flint landrace display genotype-specific transcriptome patterns associated with cold response, cold tolerance and seedling growth rate at cold. Identification of cold regulated genes in European flint germplasm, could be a starting point for introgressing such alleles in modern breeding material for maize improvement.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Plântula/genética , Transcriptoma/genética , Zea mays/genética , Temperatura Baixa , Biologia Computacional , Ontologia Genética , Variação Genética , Genótipo , Haploidia , Fenótipo , Melhoramento Vegetal , Raízes de Plantas , RNA-Seq , Plântula/crescimento & desenvolvimento , Estresse Fisiológico
17.
Plant Cell Environ ; 43(2): 344-357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31762057

RESUMO

Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/metabolismo , Lipídeos/farmacologia , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Aquaporinas/metabolismo , Transporte Biológico , Hordeum/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Prolina/metabolismo , Transcriptoma , Água/metabolismo
18.
J Exp Bot ; 71(3): 865-876, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31638701

RESUMO

Distantly related maize (Zea mays L.) inbred lines exhibit an exceptional degree of structural genomic diversity, which is probably unique among plants. This study systematically investigated the developmental and genotype-dependent regulation of the primary root transcriptomes of a genetically diverse panel of maize F1-hybrids and their parental inbred lines. While we observed substantial transcriptomic changes during primary root development, we demonstrated that hybrid-associated gene expression patterns, including differential, non-additive, and allele-specific transcriptome profiles, are particularly robust to these developmental fluctuations. For instance, differentially expressed genes with preferential expression in hybrids were highly conserved during development in comparison to their parental counterparts. Similarly, in hybrids a major proportion of non-additively expressed genes with expression levels between the parental values were particularly conserved during development. Importantly, in these expression patterns non-syntenic genes that evolved after the separation of the maize and sorghum lineages were systemically enriched. Furthermore, non-syntenic genes were substantially linked to the conservation of all surveyed gene expression patterns during primary root development. Among all F1-hybrids, between ~40% of the non-syntenic genes with unexpected allelic expression ratios and ~60% of the non-syntenic differentially and non-additively expressed genes were conserved and therefore robust to developmental changes. Hence, the enrichment of non-syntenic genes during primary root development might be involved in the developmental adaptation of maize roots and thus the superior performance of hybrids.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento
19.
BMC Genomics ; 20(1): 325, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035922

RESUMO

BACKGROUND: Water deficit and soil salinity substantially influence plant growth and productivity. When occurring individually, plants often exhibit reduced growth resulting in yield losses. The simultaneous occurrence of these stresses enhances their negative effects. Unraveling the molecular mechanisms of combined abiotic stress responses is essential to secure crop productivity under unfavorable environmental conditions. RESULTS: This study examines the effects of water deficit, salinity and a combination of both on growth and transcriptome plasticity of barley seminal roots by RNA-Seq. Exposure to water deficit and combined stress for more than 4 days significantly reduced total seminal root length. Transcriptome sequencing demonstrated that 60 to 80% of stress type-specific gene expression responses observed 6 h after treatment were also present after 24 h of stress application. However, after 24 h of stress application, hundreds of additional genes were stress-regulated compared to the short 6 h treatment. Combined salt and water deficit stress application results in a unique transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed stress type-specific adjustments of gene expression. Further, global reprogramming mediated by transcription factors and consistent over-representation of basic helix-loop-helix (bHLH) transcription factors, heat shock factors (HSF) and ethylene response factors (ERF) was observed. CONCLUSION: This study reveals the complex transcriptomic responses regulating the perception and signaling of multiple abiotic stresses in barley.


Assuntos
Hordeum/genética , Estresse Salino , Reprogramação Celular , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hordeum/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/química , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
New Phytol ; 221(1): 180-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055115

RESUMO

Barley (Hordeum vulgare) is more drought tolerant than other cereals, thus making it an excellent model for the study of the chemical, transcriptomic and physiological effects of water deficit. Roots are the first organ to sense soil water deficit. Therefore, we studied the response of barley seminal roots to different water potentials induced by polyethylene glycol (PEG) 8000. We investigated changes in anatomical parameters by histochemistry and microscopy, quantitative and qualitative changes in suberin composition by analytical chemistry, transcript changes by RNA-sequencing (RNA-Seq), and the radial water and solute movement of roots using a root pressure probe. In response to osmotic stress, genes in the suberin biosynthesis pathway were upregulated that correlated with increased suberin amounts in the endodermis and an overall reduction in hydraulic conductivity (Lpr ). In parallel, transcriptomic data indicated no or only weak effects of osmotic stress on aquaporin expression. These results indicate that osmotic stress enhances cell wall suberization and markedly reduces Lpr of the apoplastic pathway, whereas Lpr of the cell-to-cell pathway is not altered. Thus, the sealed apoplast markedly reduces the uncontrolled backflow of water from the root to the medium, whilst keeping constant water flow through the highly regulated cell-to-cell path.


Assuntos
Hordeum/fisiologia , Pressão Osmótica/fisiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Secas , Perfilação da Expressão Gênica , Hordeum/química , Hordeum/efeitos dos fármacos , Lipídeos/análise , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Polietilenoglicóis/farmacologia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA