Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606903

RESUMO

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Assuntos
Aterosclerose , Inflamação , Camundongos Knockout , Proteoglicanas , Receptores de LDL , Proteínas Recombinantes , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Feminino , Proteoglicanas/farmacologia , Proteoglicanas/metabolismo , Proteoglicanas/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Camundongos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células Espumosas/metabolismo , Células Espumosas/efeitos dos fármacos
2.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698355

RESUMO

The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study, we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. We found that HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin-Sca-1+Kit+ (LSK) bone marrow stem cell population and lymphoid-primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1-knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients. In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice.


Assuntos
Apolipoproteína A-I , Linfopoese , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Células da Medula Óssea , Transplante de Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL , Linfócitos T
3.
Drug Metab Dispos ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349298

RESUMO

Compromised hepatic drug metabolism in response to pro-inflammatory cytokine release is primarily attributed to downregulation of cytochrome P450 (CYP) enzymes. However, whether inflammation also affects other phase I and phase II drug metabolizing enzymes (DMEs) like the flavin monooxygenases (FMOs), carboxylesterases (CESs) and UDP glucuronosyltransferases (UGTs) remains unclear. This study aimed to decipher the impact of physiologically relevant concentrations of pro-inflammatory cytokines on expression and activity of phase I and phase II enzymes, in order to establish a hierarchy of their sensitivity as compared to the CYPs. Hereto, HepaRG cells were exposed to interleukin-6 and interleukin-1ß to measure alterations in DME gene expression (24h) and activity (72h). Sensitivity of DMEs towards pro-inflammatory cytokines was evaluated by determining IC50 (potency) and Imax (maximal inhibition) values from the concentration-response curves. Pro-inflammatory cytokine treatment led to nearly complete downregulation of CYP3A4 (~98%), but was generally less efficacious at reducing gene expression of the non-CYP DME families. Importantly, FMO, CES and UGT family members were less sensitive towards interleuking-6 induced inhibition in terms of potency, with IC50 values that were 4.3-7.4 fold higher than CYP3A4. Similarly, 18- to 31-fold more interleukin-1ß was required to achieve 50% of the maximal downregulation of FMO3, FMO4, CES1, UGT2B4 and UGT2B7 expression. The differential sensitivity persisted at enzyme activity level, highlighting that alterations in DME gene expression during inflammation are predictive for subsequent alterations in enzyme activity. In conclusion, we have shown that FMOs, CES and UGTs enzymes are less impacted by inflammation as compared to CYP enzymes. Significance Statement While the impact of pro-inflammatory cytokines on CYP expression is well established, their effects on non-CYP phase I and phase II drug metabolism remains underexplored, particularly regarding alterations in drug metabolizing enzyme activity. This study provides a quantitative understanding of the sensitivity differences to inflammation between DME family members, suggesting that non-CYP DMEs may become more important for the metabolism of drugs during inflammatory conditions due to their lower sensitivity as compared to the CYPs.

4.
Curr Atheroscler Rep ; 26(5): 139-146, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38498115

RESUMO

PURPOSE OF REVIEW: Here, we summarize the key findings from preclinical studies that tested the concept that editing of hepatic genes can lower plasma low-density lipoprotein (LDL)-cholesterol levels to subsequently reduce atherosclerotic cardiovascular disease risk. RECENT FINDINGS: Selective delivery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing tools targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) to hepatocytes, i.e., through encapsulation into N-acetylgalactosamine-coupled lipid nanoparticles, is able to induce a stable ~ 90% decrease in plasma PCSK9 levels and a concomitant 60% reduction in LDL-cholesterol levels in mice and non-humane primates. Studies in mice have shown that this state-of-the-art technology can be extended to include additional targets related to dyslipidemia such as angiopoietin-like 3 and several apolipoproteins. The use of gene editors holds great promise to lower plasma LDL-cholesterol levels also in the human setting. However, gene editing safety has to be guaranteed before this approach can become a clinical success.


Assuntos
Edição de Genes , Terapia Genética , Hipercolesterolemia , Pró-Proteína Convertase 9 , Edição de Genes/métodos , Humanos , Animais , Hipercolesterolemia/terapia , Hipercolesterolemia/genética , Terapia Genética/métodos , Pró-Proteína Convertase 9/genética , LDL-Colesterol/sangue , Sistemas CRISPR-Cas
5.
FASEB J ; 37(1): e22719, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562708

RESUMO

The metabolic and inflammatory processes that are implicated in the development of cardiovascular diseases are under control of the biological clock. While skeletal muscle function exhibits circadian rhythms, it is unclear to what extent the beneficial health effects of exercise are restricted to unique time windows. We aimed to study whether the timing of exercise training differentially modulates the development of atherosclerosis and elucidate underlying mechanisms. We endurance-trained atherosclerosis-prone female APOE*3-Leiden.CETP mice fed a Western-type diet, a well-established human-like model for cardiometabolic diseases, for 1 h five times a week for 4 weeks either in their early or in their late active phase on a treadmill. We monitored metabolic parameters, the development of atherosclerotic lesions in the aortic root and assessed the composition of the gut microbiota. Late, but not early, exercise training reduced fat mass by 19% and the size of early-stage atherosclerotic lesions by as much as 29% compared to sedentary animals. No correlation between cholesterol exposure and lesion size was evident, as no differences in plasma lipid levels were observed, but circulating levels of the pro-inflammatory markers ICAM-1 and VCAM-1 were reduced with late exercise. Strikingly, we observed a time-of-day-dependent effect of exercise training on the composition of the gut microbiota as only late training increased the abundance of gut bacteria producing short-chain fatty acids with proposed anti-inflammatory properties. Together, these findings indicate that timing is a critical factor to the beneficial anti-atherosclerotic effects of exercise with a great potential to further optimize training recommendations for patients.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Camundongos , Humanos , Feminino , Animais , Aterosclerose/metabolismo , Colesterol , Ácidos Graxos Voláteis/farmacologia , Apolipoproteína E3 , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
6.
Arterioscler Thromb Vasc Biol ; 43(6): 832-835, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128922

RESUMO

Hyperlipidemia is a major risk factor for the development of atherosclerotic cardiovascular disease. Lipid-lowering drug therapies therefore still form the heart of the ongoing battle against the occurrence of cardiovascular events. However, in light of the important improvements in gene interference and editing that have been made during the last 2 decades, gene therapy-the genetic modification of cells to produce a permanent therapeutic effect-is currently employed to relief hypercholesterolemic subjects from their potential (chronic) cardiovascular disease burden. In this perspective, we review the current status regarding hepatocyte-directed base editing to treat human dyslipidemia and provide suggestions for further technological improvement.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Humanos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/tratamento farmacológico , Edição de Genes , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Hipolipemiantes/uso terapêutico , Hepatócitos
7.
J Cell Mol Med ; 27(8): 1056-1068, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946061

RESUMO

Protein arginine methyltransferase 5 (PRMT5) controls inflammation and metabolism through modulation of histone methylation and gene transcription. Given the important role of inflammation and metabolism in atherosclerotic cardiovascular disease, here we examined the role of PRMT5 in atherosclerosis using the specific PRMT5 inhibitor GSK3326595. Cultured thioglycollate-elicited peritoneal macrophages were exposed to GSK3326595 or DMSO control and stimulated with either 1 ng/mL LPS or 100 ng/mL interferon-gamma for 24 h. Furthermore, male low-density lipoprotein (LDL) receptor knockout mice were fed an atherogenic Western-type diet and injected intraperitoneally 3×/week with a low dose of 5 mg/kg GSK3326595 or solvent control for 9 weeks. In vitro, GSK3326595 primed peritoneal macrophages to interferon-gamma-induced M1 polarization, as evidenced by an increased M1/M2 gene marker ratio. In contrast, no difference was found in the protein expression of iNOS (M1 marker) and ARG1 (M2 marker) in peritoneal macrophages of GSK3326595-treated mice. Also no change in the T cell activation state or the susceptibility to atherosclerosis was detected. However, chronic GSK3326595 treatment did activate genes involved in hepatic fatty acid acquisition, i.e. SREBF1, FASN, and CD36 (+59%, +124%, and +67%, respectively; p < 0.05) and significantly increased hepatic triglyceride levels (+50%; p < 0.05). PRMT5 inhibition by low-dose GSK3326595 treatment does not affect the inflammatory state or atherosclerosis susceptibility of Western-type diet-fed LDL receptor knockout mice, while it induces hepatic triglyceride accumulation. Severe side effects in liver, i.e. development of non-alcoholic fatty liver disease, should thus be taken into account upon chronic treatment with this PRMT5 inhibitor.


Assuntos
Aterosclerose , Interferon gama , Masculino , Animais , Camundongos , Interferon gama/metabolismo , Fígado/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Inflamação/metabolismo , Triglicerídeos/metabolismo , Macrófagos Peritoneais , Camundongos Knockout , Camundongos Endogâmicos C57BL
8.
Arterioscler Thromb Vasc Biol ; 40(3): 611-623, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31941380

RESUMO

OBJECTIVE: We tested the hypothesis that enlarged, dysfunctional HDL (high-density lipoprotein) particles contribute to the augmented atherosclerosis susceptibility associated with SR-BI (scavenger receptor BI) deficiency in mice. Approach and Results: We eliminated the ability of HDL particles to fully mature by targeting PLTP (phospholipid transfer protein) functionality. Particle size of the HDL population was almost fully normalized in male and female SR-BI×PLTP double knockout mice. In contrast, the plasma unesterified cholesterol to cholesteryl ester ratio remained elevated. The PLTP deficiency-induced reduction in HDL size in SR-BI knockout mice resulted in a normalized aortic tissue oxidative stress status on Western-type diet. Atherosclerosis susceptibility was-however-only partially reversed in double knockout mice, which can likely be attributed to the fact that they developed a metabolic syndrome-like phenotype characterized by obesity, hypertriglyceridemia, and a reduced glucose tolerance. Mechanistic studies in chow diet-fed mice revealed that the diminished glucose tolerance was probably secondary to the exaggerated postprandial triglyceride response. The absence of PLTP did not affect LPL (lipoprotein lipase)-mediated triglyceride lipolysis but rather modified the ability of VLDL (very low-density lipoprotein)/chylomicron remnants to be cleared from the circulation by the liver through receptors other than SR-BI. As a result, livers of double knockout mice only cleared 26% of the fractional dose of [14C]cholesteryl oleate after intravenous VLDL-like particle injection. CONCLUSIONS: We have shown that disruption of PLTP-mediated HDL maturation reduces SR-BI deficiency-driven atherosclerosis susceptibility in mice despite the induction of proatherogenic metabolic complications in the double knockout mice.


Assuntos
Aterosclerose/prevenção & controle , HDL-Colesterol/sangue , Metabolismo Energético , Fígado/metabolismo , Síndrome Metabólica/sangue , Proteínas de Transferência de Fosfolipídeos/deficiência , Receptores Depuradores Classe B/deficiência , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Ésteres do Colesterol/administração & dosagem , Ésteres do Colesterol/sangue , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Hipertrigliceridemia/sangue , Hipertrigliceridemia/genética , Masculino , Síndrome Metabólica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , Proteínas de Transferência de Fosfolipídeos/genética , Placa Aterosclerótica , Receptores Depuradores Classe B/genética
9.
Am J Physiol Endocrinol Metab ; 319(1): E102-E104, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369415

RESUMO

Glucocorticoids belong to the superfamily of steroid hormones that are synthesized from the common precursor cholesterol. Adrenal gland-derived glucocorticoids, e.g., cortisol in humans and corticosterone in rodents, contribute to various processes essential for normal daily life. Glucocorticoid deficiency, also referred to as primary adrenal insufficiency, therefore, often becomes evident early in life and can be present with hypoglycemia, a failure to thrive, recurrent development of infections, and neurological problems, such as seizures and coma. The majority of congenital primary adrenal insufficiency cases are caused by deleterious mutations in genes involved in the intracellular mobilization of cholesterol and the subsequent conversion of cholesterol into glucocorticoids. A significant number of glucocorticoid deficiency cases, however, cannot be explained by known genetic variations. This perspective highlights existing literature regarding the importance of lipoprotein-derived cholesterol acquisition through scavenger receptor class B, type I (SR-BI/SCARB1) for the maintenance of an optimal adrenal glucocorticoid function in mice and humans. On the basis of the reviewed findings, it is suggested that the SCARB1 gene should be included in the standard glucocorticoid deficiency genetic screening panel to 1) facilitate knowledge development on the relative contribution of SR-BI-mediated cholesterol acquisition to steroid hormone synthesis in humans and 2) open up the possibility to reclassify glucocorticoid deficiency patients without a currently known genetic cause for concomitant treatment optimization.


Assuntos
Doença de Addison/genética , Colesterol/metabolismo , Glucocorticoides/biossíntese , Receptores Depuradores Classe B/genética , Doença de Addison/congênito , Doença de Addison/diagnóstico , Doença de Addison/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Testes Genéticos , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Knockout , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/metabolismo
10.
Gastroenterology ; 153(2): 382-385.e3, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28438611

RESUMO

In nematodes, the intestine senses and integrates early life dietary cues that lead to lifelong epigenetic adaptations to a perceived nutritional environment-it is not clear whether this process occurs in mammals. We aimed to establish a mouse model of reduced dietary cholesterol availability from maternal milk and investigate the consequences of decreased milk cholesterol availability, early in life, on the metabolism of cholesterol in adult mice. We blocked intestinal absorption of cholesterol in milk fed to newborn mice by supplementing the food of dams (for 3 weeks between birth and weaning) with ezetimibe, which is secreted into milk. Ezetimibe interacts with the intestinal cholesterol absorption transporter NPC1l1 to block cholesterol uptake into enterocytes. Characterization of these offspring at 24 weeks of age showed a 27% decrease in cholesterol absorption (P < .001) and reduced levels of Npc1l1 messenger RNA and protein, but not other cholesterol transporters, in the proximal small intestine. We observed increased histone H3K9me3 methylation at positions -423 to -607 of the proximal Npc1l1 promoter in small intestine tissues from 24-week-old offspring fed ezetimibe during lactation, compared with controls. These findings show that the early postnatal mammalian intestine functions as an environmental sensor of nutritional conditions, responding to conditions such as low cholesterol levels by epigenetic modifications of genes. Further studies are needed to determine how decreased sterol absorption for a defined period might activate epigenetic regulators; the findings of our study might have implications for human infant nutrition and understanding and preventing cardiometabolic disease.


Assuntos
Adaptação Fisiológica , Colesterol na Dieta/metabolismo , Colesterol/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Disponibilidade Biológica , Transporte Biológico , Enterócitos/metabolismo , Epigênese Genética , Ezetimiba/farmacologia , Feminino , Histonas/metabolismo , Absorção Intestinal/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestinos/citologia , Lactação/fisiologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Camundongos , Leite/química , Modelos Animais , RNA Mensageiro/metabolismo
11.
Curr Opin Lipidol ; 28(3): 255-260, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28301373

RESUMO

PURPOSE OF REVIEW: Scavenger receptor BI (SR-BI) is classically known for its role in antiatherogenic reverse cholesterol transport as it selectively takes up cholesterol esters from HDL. Here, we have highlighted recent literature that describes novel functions for SR-BI in physiology and disease. RECENT FINDINGS: A large population-based study has revealed that patients heterozygous for the P376L mutant form of SR-BI showed significantly increased levels of plasma HDL-cholesterol and had increased risk of cardiovascular disease, demonstrating that SR-BI in humans is a significant determinant of cardiovascular disease. Furthermore, SR-BI has been shown to modulate the susceptibility to LPS-induced tissue injury and the ability of sphingosine 1 phosphate to interact with its receptor, linking SR-BI to the regulation of inflammation. In addition, important domains within the molecule (Trp-415) as well as novel regulators (procollagen C-endopeptidase enhancer protein 2) of SR-BI's selective uptake function have recently been identified. Moreover, relatively high expression levels of the SR-BI protein have been observed in a variety of cancer tissues, which is associated with a reduced overall survival rate. SUMMARY: The HDL receptor SR-BI is a potential therapeutic target not only in the cardiovascular disease setting, but also in inflammatory conditions as well as in cancer.


Assuntos
Antígenos CD36/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Inflamação/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
12.
J Lipid Res ; 57(4): 631-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891738

RESUMO

The contribution of HDL to adrenal steroidogenesis appears to be different between mice and humans. In the current study, we tested the hypothesis that a difference in lipoprotein profile may be the underlying cause. Hereto, we determined the impact of HDL deficiency on the adrenal glucocorticoid output in genetically modified mice with a human-like lipoprotein profile. Genetic deletion of APOA1 in LDL receptor (LDLR) knockout mice was associated with HDL deficiency and a parallel increase in the level of cholesterol associated with nonHDL fractions. Despite a compensatory increase in the adrenal relative mRNA expression levels of the cholesterol synthesis gene, HMG-CoA reductase, adrenals from APOA1/LDLR double knockout mice were severely depleted of neutral lipids, as compared with those of control LDLR knockout mice. However, basal corticosterone levels and the adrenal glucocorticoid response to stress were not different between the two types of mice. In conclusion, we have shown that HDL is not critical for proper adrenal glucocorticoid function when mice are provided with a human-like lipoprotein profile. Our findings provide the first experimental evidence that APOB-containing lipoproteins may facilitate adrenal steroidogenesis, in an LDLR-independent manner, in vivo in mice.


Assuntos
HDL-Colesterol/sangue , Receptores de LDL/deficiência , Receptores de LDL/genética , Animais , Corticosterona/sangue , Humanos , Masculino , Camundongos , Camundongos Knockout
13.
Hepatology ; 62(6): 1710-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26174697

RESUMO

UNLABELLED: The role of Kupffer cells (KCs) in the pathophysiology of the liver has been firmly established. Nevertheless, KCs have been underexplored as a target for diagnosis and treatment of liver diseases owing to the lack of noninvasive diagnostic tests. We addressed the hypothesis that cholesteryl ester transfer protein (CETP) is mainly derived from KCs and may predict KC content. Microarray analysis of liver and adipose tissue biopsies, obtained from 93 obese subjects who underwent elective bariatric surgery, showed that expression of CETP is markedly higher in liver than adipose tissue. Hepatic expression of CETP correlated strongly with that of KC markers, and CETP messenger RNA and protein colocalized specifically with KCs in human liver sections. Hepatic KC content as well as hepatic CETP expression correlated strongly with plasma CETP concentration. Mechanistic and intervention studies on the role of KCs in determining the plasma CETP concentration were performed in a transgenic (Tg) mouse model expressing human CETP. Selective elimination of KCs from the liver in CETP Tg mice virtually abolished hepatic CETP expression and largely reduced plasma CETP concentration, consequently improving the lipoprotein profile. Conversely, augmentation of KCs after Bacille-Calemette-Guérin vaccination largely increased hepatic CETP expression and plasma CETP. Also, lipid-lowering drugs fenofibrate and niacin reduced liver KC content, accompanied by reduced plasma CETP concentration. CONCLUSIONS: Plasma CETP is predominantly derived from KCs, and plasma CETP level predicts hepatic KC content in humans.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Células de Kupffer/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
14.
Toxicol Appl Pharmacol ; 306: 1-7, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374722

RESUMO

Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18±5ng/ml vs 472±58ng/ml; P<0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast, the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%-93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P<0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P<0.01) and 82% (P<0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P<0.05), which translated into a 73% lower plasma total cholesterol level (P<0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice.


Assuntos
Colestase/sangue , Corticosterona/sangue , Hipercolesterolemia/sangue , Hepatopatias/sangue , 1-Naftilisotiocianato , Adrenalectomia , Animais , Ácidos e Sais Biliares/metabolismo , Colestase/induzido quimicamente , Colestase/complicações , Colestase/metabolismo , Colestase/patologia , Colesterol/sangue , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Camundongos Endogâmicos C57BL , Mifepristona/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/antagonistas & inibidores
16.
Handb Exp Pharmacol ; 224: 301-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25522993

RESUMO

High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , HDL-Colesterol/sangue , Transportador 1 de Cassete de Ligação de ATP/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/sangue , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Aterosclerose/sangue , Aterosclerose/genética , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , HDL-Colesterol/genética , Modelos Animais de Doenças , Genótipo , Lipoproteínas/sangue , Lipoproteínas/genética , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Proteínas de Transferência de Fosfolipídeos/sangue , Proteínas de Transferência de Fosfolipídeos/genética , Fatores de Proteção , Fatores de Risco , Receptores Depuradores Classe B/sangue , Receptores Depuradores Classe B/genética
17.
J Am Chem Soc ; 136(49): 16958-61, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25434769

RESUMO

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.


Assuntos
Acetilgalactosamina/química , Inativação Gênica , Hepatócitos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular
18.
N Engl J Med ; 364(2): 136-45, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21226579

RESUMO

BACKGROUND: In mice, the scavenger receptor class B type I (SR-BI) is essential for the delivery of high-density lipoprotein (HDL) cholesterol to the liver and steroidogenic organs. Paradoxically, elevated HDL cholesterol levels are associated with increased atherosclerosis in SR-BI-knockout mice. It is unclear what role SR-BI plays in human metabolism. METHODS: We sequenced the gene encoding SR-BI in persons with elevated HDL cholesterol levels and identified a family with a new missense mutation (P297S). The functional effects of the P297S mutation on HDL binding, cellular cholesterol uptake and efflux, atherosclerosis, platelet function, and adrenal function were studied. RESULTS: Cholesterol uptake from HDL by primary murine hepatocytes that expressed mutant SR-BI was reduced to half of that of hepatocytes expressing wild-type SR-BI. Carriers of the P297S mutation had increased HDL cholesterol levels (70.4 mg per deciliter [1.8 mmol per liter], vs. 53.4 mg per deciliter [1.4 mmol per liter] in noncarriers; P<0.001) and a reduced capacity for efflux of cholesterol from macrophages, but the carotid artery intima-media thickness was similar in carriers and in family noncarriers. Platelets from carriers had increased unesterified cholesterol content and impaired function. In carriers, adrenal steroidogenesis was attenuated, as evidenced by decreased urinary excretion of sterol metabolites, a decreased response to corticotropin stimulation, and symptoms of diminished adrenal function. CONCLUSIONS: We identified a family with a functional mutation in SR-BI. The mutation carriers had increased HDL cholesterol levels and a reduction in cholesterol efflux from macrophages but no significant increase in atherosclerosis. Reduced SR-BI function was associated with altered platelet function and decreased adrenal steroidogenesis. (Funded by the European Community and others.).


Assuntos
Insuficiência Adrenal/genética , Aterosclerose/genética , HDL-Colesterol/sangue , Colesterol/metabolismo , Mutação de Sentido Incorreto , Receptores Depuradores Classe B/genética , Adolescente , Glândulas Suprarrenais/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Artérias Carótidas/anatomia & histologia , Colesterol/sangue , Análise Mutacional de DNA , Feminino , Heterozigoto , Homeostase/genética , Humanos , Hidrocortisona/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linhagem , Ativação Plaquetária/genética , Triglicerídeos/sangue , Adulto Jovem
19.
Arterioscler Thromb Vasc Biol ; 33(2): e39-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202366

RESUMO

OBJECTIVE: We determined the physiological consequences of adrenocortical-specific deletion of scavenger receptor BI (SR-BI) function in C57BL/6 wild-type mice. METHODS AND RESULTS: One adrenal from 10-day-old SR-BI knockout (KO) mice or wild-type controls was transplanted under the renal capsule of adrenalectomized C57BL/6 recipient mice. The fasting plasma corticosterone level increased over time in transplanted mice. Corticosterone values in SR-BI KO transplanted mice remained ≈50% lower (P<0.001) as compared with wild-type transplanted mice, which coincided with adrenocortical lipid depletion. A 6.5-fold higher (P<0.01) plasma adrenocorticotropic hormone level was present in SR-BI KO transplanted mice reminiscent of primary glucocorticoid insufficiency. On feeding with cholic acid-containing high cholesterol/high fat diet, SR-BI KO transplanted mice exhibited a 26% (P<0.05) reduction in their liver triglyceride level. Hepatic myosin regulatory light chain interacting protein/inducible degrader of the low-density lipoprotein receptor mRNA expression was 48% (P<0.01) decreased in adrenal-specific SR-BI KO mice, which was paralleled by a marked decrease (-46%; P<0.01) in proatherogenic very-low-density and low-density lipoprotein levels. CONCLUSIONS: Adrenal-specific disruption of SR-BI function induces glucocorticoid insufficiency and lowers plasma very-low-density and low-density lipoprotein levels in atherogenic diet-fed C57BL/6 mice. These findings further highlight the interaction between adrenal high-density lipoprotein-cholesterol uptake by SR-BI, adrenal steroidogenesis, and the regulation of hepatic lipid metabolism.


Assuntos
Glândulas Suprarrenais/metabolismo , Insuficiência Adrenal/metabolismo , Corticosterona/deficiência , Lipoproteínas LDL/sangue , Lipoproteínas VLDL/sangue , Receptores Depuradores Classe B/deficiência , Glândulas Suprarrenais/transplante , Insuficiência Adrenal/sangue , Insuficiência Adrenal/genética , Adrenalectomia , Hormônio Adrenocorticotrópico/sangue , Animais , Colesterol na Dieta/sangue , Corticosterona/sangue , Dieta Aterogênica , Regulação para Baixo , Jejum/sangue , Feminino , Regulação da Expressão Gênica , Genótipo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/genética , Transdução de Sinais , Fatores de Tempo , Triglicerídeos/metabolismo
20.
J Lipid Atheroscler ; 13(1): 69-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38299166

RESUMO

Objective: Scavenger receptor class B type I (SR-BI) is primarily known for its role in the selective uptake of cholesteryl esters (CEs) from high-density lipoproteins (HDLs). Here we investigated whether SR-BI deficiency is associated with other potentially relevant changes in the plasma lipidome than the established effect of HDL-cholesterol elevation. Methods: Targeted ultra-high-performance liquid chromatography-tandem mass spectrometry was utilized to measure lipid species in plasma from female wild-type and SR-BI knockout mice. Results: SR-BI deficiency was associated with a reduction in the average CE fatty acid length (-2%; p<0.001) and degree of CE fatty acid unsaturation (-18%; p<0.001) due to a relative shift from longer, polyunsaturated CE species CE (20:4), CE (20:5), and CE (22:6) towards the mono-unsaturated CE (18:1) species. Sphingomyelin (SM) levels were 64% higher (p<0.001) in SR-BI knockout mice without a parallel change in (lyso)phosphatidylcholine (LPC) concentrations, resulting in an increase in the SM/LPC ratio from 0.102±0.005 to 0.163±0.003 (p<0.001). In addition, lower LPC lengths (-5%; p<0.05) and fatty acid unsaturation degrees (-20%; p<0.01) were detected in SR-BI knockout mice. Furthermore, SR-BI deficiency was associated with a 4.7-fold increase (p<0.001) in total plasma ceramide (Cer) levels, with a marked >9-fold rise (p<0.001) in Cer (d18:1/24:1) concentrations. Conclusion: We have shown that SR-BI deficiency in mice not only impacts the CE concentrations, length, and saturation index within the plasma compartment, but is also associated with plasma accumulation of several Cer and SM species that may contribute to the development of specific hematological and metabolic (disease) phenotypes previously detected in SR-BI knockout mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA