Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G682-G693, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003602

RESUMO

Postprandial dyslipidemia is a common feature of insulin-resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. Although bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear. Here, we investigated the potential role of bile acids in regulation of postprandial chylomicron production and triglyceride excursion. Healthy C57BL/6 mice were given an intraduodenal infusion of taurocholic acid (TA) under fat-loaded conditions, and circulating lipids were measured. Targeting of bile acid receptors was achieved with GW4064, a synthetic agonist to the farnesoid X receptor (FXR), and deoxycholic acid (DCA), an activator of the Takeda G-protein-coupled receptor 5. TA, GW4064, and DCA treatments all lowered postprandial lipemia. FXR agonism also reduced intestinal triglyceride content and activity of microsomal triglyceride transfer protein, involved in chylomicron assembly. Importantly, TA (but not DCA) effects were largely lost in FXR knockout mice. These bile acid effects are reminiscent of the antidiabetic hormone glucagon-like peptide-1 (GLP-1). Although the GLP-1 receptor agonist exendin-4 retained its ability to acutely lower postprandial lipemia during bile acid sequestration and FXR deficiency, it did raise hepatic expression of the rate-limiting enzyme for bile acid synthesis. Bile acid signaling may be an important mechanism of controlling dietary lipid absorption, and bile acid receptors may constitute novel targets for the treatment of postprandial dyslipidemia.NEW & NOTEWORTHY We present new data suggesting potentially important roles for bile acids in regulation of postprandial lipid metabolism. Specific bile acid species, particularly secondary bile acids, were found to markedly inhibit absorption of dietary lipid and reduce postprandial triglyceride excursion. These effects appear to be mediated via bile acid receptors, farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Importantly, bile acid signaling may trigger glucagon-like peptide-1 (GLP-1) secretion, which may in turn mediate the marked inhibitory effects on dietary fat absorption.


Assuntos
Ácido Desoxicólico/farmacologia , Hiperlipidemias/tratamento farmacológico , Isoxazóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Período Pós-Prandial , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Exenatida/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Mucosa Intestinal , Intestinos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/agonistas , Ácido Taurocólico/farmacologia
2.
Curr Opin Clin Nutr Metab Care ; 22(4): 284-288, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31107259

RESUMO

PURPOSE OF REVIEW: To review recent evidence for the role of carbohydrates in the promotion of de novo lipogenesis and lipoprotein secretion from the intestine. RECENT FINDINGS: The consumption of diets rich in carbohydrates have been shown to promote elevations in circulating lipids. In particular, the consumption of monosaccharides, such as glucose and fructose, have been shown to induce increases in intestinal de novo lipogenesis, as well as be used as a substrate for the synthesis of triglycerides and lipoprotein export in the form of chylomicrons. Recently, various systematic reviews have analyzed the relative contribution of dietary fructose to intestinal lipogenesis. Although, there remains controversy within the literature, the body of evidence supports lipogenic effects of high fructose diets. In addition, alterations in markers of de novo lipogenesis within the jejunum of patients with insulin resistance may explain the alterations in their postprandial lipid profile. SUMMARY: Recent evidence supports the contribution of dietary carbohydrates to intestinal lipogenesis and lipoprotein secretion; however, further research is required to fully understand the mechanisms underlying this complex process.


Assuntos
Carboidratos da Dieta/metabolismo , Mucosa Intestinal/metabolismo , Lipogênese/fisiologia , Triglicerídeos/metabolismo , Quilomícrons/metabolismo , Frutose/metabolismo , Humanos , Intestinos/fisiologia
3.
Med Rev (2021) ; 4(4): 301-311, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135603

RESUMO

Metabolic health is highly dependent on intestinal and hepatic handling of dietary and endogenous lipids and lipoproteins. Disorders of lipid and lipoprotein metabolism are commonly observed in patients with insulin resistant states such as obesity, metabolic syndrome, and type 2 diabetes. Evidence from both animal models and human studies indicates that a major underlying factor in metabolic or diabetic dyslipidemia is the overproduction of hepatic and intestinal apolipoprotein (apo)B-containing lipoprotein particles. These particles are catabolized down into highly proatherogenic remnants, which can be taken up into the arterial intima and promote plaque development. Several gut-derived peptides have been identified as key regulators of energy metabolism; one such peptide is the incretin hormone glucagon-like peptide (GLP)-1. Our laboratory has previously demonstrated that GLP-1 can signal both centrally and peripherally to reduce postprandial and fasting lipoprotein secretion. Moreover, we have demonstrated that GLP-1 receptor (GLP-1R) agonists can ameliorate diet-induced dyslipidemia. Recently, we published evidence for a novel vagal neuroendocrine signalling pathway by which native GLP-1 may exert its anti-lipemic effects. Furthermore, we demonstrated a novel role for other gut-derived peptides in regulating intestinal lipoprotein production. Overall, ample evidence supports a key role for GLP-1R on the portal vein afferent neurons and nodose ganglion in modulating intestinal fat absorption and lipoprotein production and identifies other gut-derived peptides as novel regulators of postprandial lipemia. Insights from these data may support identification of potential drug targets and the development of new therapeutics targeting treatment of diabetic dyslipidemia.

4.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39248655

RESUMO

Postprandial dyslipidemia is commonly present in people with type 2 diabetes and obesity and is characterized by overproduction of apolipoprotein B48-containing chylomicron particles from the intestine. Peripheral serotonin is emerging as a regulator of energy homeostasis with profound implications for obesity; however, its role in dietary fat absorption and chylomicron production is unknown. Chylomicron production was assessed in Syrian golden hamsters by administering an olive oil gavage and IP poloxamer to inhibit lipoprotein clearance. Administration of serotonin or selective serotonin reuptake inhibitor, fluoxetine, increased postprandial plasma triglyceride (TG) and TG-rich lipoproteins. Conversely, inhibiting serotonin synthesis pharmacologically by p-chlorophenylalanine (PCPA) led to a reduction in both the size and number of TG-rich lipoprotein particles, resulting in lower plasma TG and apolipoprotein B48 levels. The effects of PCPA occurred independently of gastric emptying and vagal afferent signaling. Inhibiting serotonin synthesis by PCPA led to increased TG within the intestinal lumen and elevated levels of TG and cholesterol in the stool when exposed to a high-fat/high-cholesterol diet. These findings imply compromised fat absorption, as evidenced by reduced lipase activity in the duodenum and lower levels of serum bile acids, which are indicative of intestinal bile acids. During the postprandial state, mRNA levels for serotonin receptors (5-HTRs) were upregulated in the proximal intestine. Administration of cisapride, a 5-HT4 receptor agonist, alleviated reductions in postprandial lipemia caused by serotonin synthesis inhibition, indicating that serotonin controls dietary fat absorption and chylomicron secretion via 5-HT4 receptor.


Assuntos
Quilomícrons , Gorduras na Dieta , Mesocricetus , Receptores 5-HT4 de Serotonina , Serotonina , Triglicerídeos , Animais , Masculino , Quilomícrons/metabolismo , Serotonina/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Gorduras na Dieta/farmacologia , Triglicerídeos/metabolismo , Triglicerídeos/sangue , Cricetinae , Fenclonina/farmacologia , Absorção Intestinal/efeitos dos fármacos , Fluoxetina/farmacologia , Período Pós-Prandial/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
5.
Diabetes ; 71(7): 1388-1399, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476805

RESUMO

Postprandial dyslipidemia is a metabolic condition commonly associated with insulin-resistant states, such as obesity and type 2 diabetes. It is characterized by the overproduction of intestinal chylomicron particles and excess atherogenic chylomicron remnants in circulation. We have previously shown that glucagon-like peptide 2 (GLP-2) augments dietary fat uptake and chylomicron production in insulin-resistant states; however, the underlying mechanisms remain unclear. Previous studies have implicated nitric oxide (NO) in the absorptive actions of GLP-2. In this study, we report a novel role for neuronal NO synthase (nNOS)-mediated NO generation in lipid uptake and chylomicron formation based on studies in C57BL/6J mice, nNOS-/- mice, and Syrian golden hamsters after intraduodenal and oral fat administration. GLP-2 treatment in wild-type (WT) mice significantly increased postprandial lipid accumulation and circulating apolipoprotein B48 protein levels, while these effects were abolished in nNOS-/- mice. nNOS inhibition in Syrian golden hamsters and protein kinase G (PKG) inhibition in WT mice also abrogated the effect of GLP-2 on postprandial lipid accumulation. These studies demonstrate a novel mechanism in which nNOS-generated NO is crucial for GLP-2-mediated lipid absorption and chylomicron production in both mouse and hamster models. Overall, our data implicate an nNOS-PKG-mediated pathway in GLP-2-mediated stimulation of dietary fat absorption and intestinal chylomicron production.


Assuntos
Quilomícrons , Diabetes Mellitus Tipo 2 , Animais , Quilomícrons/metabolismo , Cricetinae , Gorduras na Dieta/farmacologia , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Peptídeo 2 Semelhante ao Glucagon/fisiologia , Insulina/metabolismo , Absorção Intestinal , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo
6.
Mol Metab ; 65: 101590, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36067913

RESUMO

BACKGROUND/OBJECTIVE: GLP-1R agonists have been shown to reduce fasting and postprandial plasma lipids, both of which are independent risk factors for the development of cardiovascular disease. However, how endogenous GLP-1 - which is rapidly degraded - modulates intestinal and hepatic lipid metabolism is less clear. A vagal gut-brain-axis originating in the portal vein has been proposed as a possible mechanism for GLP-1's anti-lipemic effects. Here we sought to examine the relationship between vagal GLP-1 signalling and intestinal lipid absorption and lipoprotein production. METHODS: Syrian golden hamsters or C57BL/6 mice received portal vein injections of GLP-1(7-36), and postprandial and fasting plasma TG, TRL TG, or VLDL TG were examined. These experiments were repeated during sympathetic blockade, and under a variety of pharmacological or surgical deafferentation techniques. In addition, hamsters received nodose ganglia injections of a GLP-1R agonist or antagonist to further probe the vagal pathway. Peripheral studies were repeated in a novel GLP-1R KO hamster model and in our diet-induced hamster models of insulin resistance. RESULTS: GLP-1(7-36) site-specifically reduced postprandial and fasting plasma lipids in both hamsters and mice. These inhibitory effects of GLP-1 were investigated via pharmacological and surgical denervation experiments and found to be dependent on intact afferent vagal signalling cascades and efferent changes in sympathetic tone. Furthermore, GLP-1R agonism in the nodose ganglia resulted in markedly reduced postprandial plasma TG and TRL TG, and fasting VLDL TG and this nodose GLP-1R activity was essential for portal GLP-1s effect. Notably, portal and nodose ganglia GLP-1 effects were lost in GLP-1R KO hamsters and following diet-induced insulin resistance. CONCLUSION: Our data demonstrates for the first time that portal GLP-1 modulates postprandial and fasting lipids via a complex vagal gut-brain-liver axis. Importantly, loss or interference with this signalling axis via surgical, pharmacological, or dietary intervention resulted in the loss of portal GLP-1s anti-lipemic effects. This supports emerging evidence that native GLP-1 works primarily through a vagal neuroendocrine mechanism.


Assuntos
Quilomícrons , Resistência à Insulina , Animais , Quilomícrons/metabolismo , Cricetinae , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Lipoproteínas/metabolismo , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Veia Porta/metabolismo
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 326-334, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578967

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a continuum of disorders that can range from simple steatosis to non-alcoholic steatohepatitis (NASH). As a complex metabolic disorder, the pathophysiology of NAFLD is incompletely understood. Recently glucagon-like peptide (GLP)-1 and -2 signalling has been implicated in the pathogenesis of NAFLD. The role of these gut hormones in the hepatic abnormalities is complicated by lack of consensus on the presence of GLP-1 and GLP-2 receptors within the liver. Nevertheless, GLP-1 and GLP-2 receptor agonists have been associated with alterations in lipid metabolism and hepatic and systemic inflammation, pathological abnormalities characteristic of NAFLD. Treatment with GLP-1 analogues has been shown to reverse features of NAFLD including insulin resistance, and alterations in hepatic de novo lipogenesis and reactive oxygen species. In this review, we provide an overview of the role of GLP-1 and GLP-2 in lipid homeostasis and metabolic disease including NAFLD and NASH.


Assuntos
Peptídeos Semelhantes ao Glucagon/metabolismo , Metabolismo dos Lipídeos/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/fisiologia , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Lipoproteínas/metabolismo , Liraglutida/farmacologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA