Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(36): 14320-14325, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208257

RESUMO

Bioluminescence imaging (BLI) is an important noninvasive optical imaging technique that has been widely used to monitor many biological processes due to its high sensitivity, resolution, and signal-to-noise ratio. However, the BLI technique based on the firefly luciferin-luciferase system is limited by the expression of exogenous luciferase and the short half-life of firefly luciferin, which pose challenges for long-term tracking in vivo. To solve the problems, here we rationally designed an intelligent strategy for persistent BLI in tumors by combining luciferase-loaded calcium phosphate nanoparticles (Luc@CaP NPs) to provide luciferase and the probe Cys(SEt)-Lys-CBT (CKCBT) to slowly produce the luciferase substrate amino luciferin (Am-luciferin). Luc@CaP NPs constructed with CaP as a carrier could enable luciferase activity to be maintained in vivo for at least 12 h. And compared to the conventional substrate luciferin, CKCBT apparently prolonged the BL time by up to 2 h through GSH-induced intracellular self-assembly and subsequent protease degradation-induced release of Am-luciferin. We anticipate that this strategy could be applied for clinical translation in more disease diagnosis and treatment in the near future.


Assuntos
Neoplasias da Mama , Fosfatos de Cálcio , Luciferases , Medições Luminescentes , Nanopartículas , Fosfatos de Cálcio/química , Nanopartículas/química , Animais , Medições Luminescentes/métodos , Humanos , Luciferases/metabolismo , Luciferases/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Camundongos , Imagem Óptica , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Camundongos Nus
2.
Small ; 20(31): e2311351, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453673

RESUMO

Supramolecular self-assembly has emerged as an efficient tool to construct well-organized nanostructures for biomedical applications by small organic molecules. However, the physicochemical properties of self-assembled nanoarchitectures are greatly influenced by their morphologies, mechanical properties, and working mechanisms, making it challenging to design and screen ideal building blocks. Herein, using a biocompatible firefly-sourced click reaction between the cyano group of 2-cyano-benzothiazole (CBT) and the 1,2-aminothiol group of cysteine (Cys), an amino-acid-encoded supramolecular self-assembly platform Cys(SEt)-X-CBT (X represents any amino acid) is developed to incorporate both covalent and noncovalent interactions for building diverse morphologies of nanostructures with bioinspired response mechanism, providing a convenient and rapid strategy to construct site-specific nanocarriers for drug delivery, cell imaging, and enzyme encapsulation. Additionally, it is worth noting that the biodegradation of Cys(SEt)-X-CBT generated nanocarriers can be easily tracked via bioluminescence imaging. By caging either the thiol or amino groups in Cys with other stimulus-responsive sites and modifying X with probes or drugs, a variety of multi-morphological and multifunctional nanomedicines can be readily prepared for a wide range of biomedical applications.


Assuntos
Portadores de Fármacos , Nanoestruturas , Nanoestruturas/química , Portadores de Fármacos/química , Aminoácidos/química , Humanos , Cisteína/química
3.
Chem Sci ; 14(21): 5768-5773, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37265734

RESUMO

Sensitivity and specificity are two indispensable requirements to ensure diagnostic accuracy. Dual-locked probes with "AND-gate" logic theory have emerged as a powerful tool to enhance imaging specificity, avoid "false positive" results, and realize correlation analysis. In addition, bioluminescence imaging (BLI) is an excitation-free optical modality with high sensitivity and low background and can thus be combined with a dual-locked strategy for precise disease imaging. Here, we developed a novel AND-gate bioluminescent probe, FK-Luc-BH, which is capable of responding to two different tumor biomarkers (cathepsin L and ClO-). The good specificity of FK-Luc-BH was proven, as an obvious BL signal could only be observed in the solution containing both cathepsin L (CTSL) and ClO-. 4T1-fLuc cells and tumors treated with FK-Luc-BH exhibited significantly higher BL signals than those treated with unresponsive control compound Ac-Luc-EA or cotreated with FK-Luc-BH and a ClO- scavenger/cathepsin inhibitor, demonstrating the ability of FK-Luc-BH to precisely recognize tumors in which CTSL and ClO- coexist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA