RESUMO
Successful assisted reproductive technology pregnancy depends on the viability of embryos and endometrial receptivity. However, the literature has neglected effects of the endometrial environment during the proliferative phase on implantation success or failure. Human endometrial stromal cells (hESCs) were isolated from endometrial tissues sampled at oocyte retrieval during the proliferative phase from women undergoing infertility treatment. Primary hESC cultures were used to investigate the relationship between stemness and senescence induction in this population and embryo receptivity. Patients were classified as receptive or non-receptive based on their pregnancy diagnosis after embryo transfer. Biomarkers of cellular senescence and somatic stem cells were compared between each sample. hESCs from non-receptive patients exhibited significantly higher (P < 0.01) proportions of senescent cells, mRNA expressions of CDKN2A and CDKN1A transcripts (P < 0.01), and expressions of genes encoding the senescence-associated secretory phenotype (P < 0.05). hESCs from receptive patients had significantly higher (P < 0.01) mRNA expressions of ABCG2 and ALDH1A1 transcripts. Our findings suggest that stemness is inversely associated with senescence induction in hESCs and, by extension, that implantation failure in infertility treatment may be attributable to a combination of senescence promotion and disruption of this maintenance function in this population during the proliferative phase of the menstrual cycle. This is a promising step towards potentially improving the embryo receptivity of endometrium. The specific mechanism by which implantation failure is prefigured by a loss of stemness among endometrial stem cells, and cellular senescence induction among hESCs, should be elucidated in detail in the future.
Assuntos
Senescência Celular/fisiologia , Implantação do Embrião/fisiologia , Endométrio/citologia , Endométrio/fisiologia , Técnicas de Reprodução Assistida , Células Estromais/fisiologia , Adulto , Biomarcadores/análise , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Senescência Celular/genética , Quimiocinas/análise , Citocinas/análise , Transferência Embrionária , Feminino , Expressão Gênica , Humanos , Infertilidade Feminina/terapia , Pessoa de Meia-Idade , Células-Tronco/fisiologia , Células Estromais/química , Falha de Tratamento , beta-Galactosidase/análiseRESUMO
PURPOSE: To investigate the relationship between the meiotic spindle size in human metaphase II oocytes and embryo developmental potential after intracytoplasmic sperm injection (ICSI). METHODS: Analyzed were 1302 oocytes with a visible meiotic spindle from 281 patients aged under 40 years undergoing ICSI cycles. The meiotic spindle was imaged by using PolScope before ICSI. The oocytes were classified into three groups, according to spindle size: group A (<90 µm2), group B (90-120 µm2), and group C (>120 µm2). RESULTS: Overall, 389 (29.9%) oocytes were classified into group A, 662 (50.8%) into group B, and 251 (19.3%) into group C. The fertilization rate of the group B oocytes was significantly higher than for the A and C oocytes. The blastocyst formation rate in group B was significantly higher than in group A. In addition, the pregnancy rate in group B was significantly higher than in the other two groups. CONCLUSION: The oocytes with a spindle size of 90-120 µm2 showed higher fertilization, blastocyst formation, and clinical pregnancy rates than those with larger or smaller spindles. The measurement of the meiotic spindle size thus has a positive predictive value for identifying human embryo developmental potential clinically.
RESUMO
Effects of several Cl(-) channel blockers on ionic currents in mouse embryos were studied using whole-cell patch-clamp and microelectrode methods. Microelectrode measurements showed that the resting membrane potential of early embryonic cells (1-cell stage) was -23 mV and that reduction of extracellular Cl(-) concentration depolarized the membrane, suggesting that Cl(-) conductance is a major contributor for establishing the resting membrane potential. Membrane currents recorded by whole-cell voltage clamp showed outward rectification and confirmed that a major component of these embryonic currents are carried by Cl(-) ions. A Cl(-) channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), suppressed the outward rectifier current in a voltage- and concentration-dependent manner. Other Cl(-) channel blockers (5-nitro-2-[3-phenylpropyl-amino] benzoic acid and 2-[3-(trifluoromethyl)-anilino] nicotinic acid [niflumic acid]) similarly inhibited this current. Simultaneous application of niflumic acid with DIDS further suppressed the outward rectifier current. Under high osmotic condition, niflumic acid, but not DIDS, inhibited the Cl(-)current, suggesting the presence of two types of Cl(-) channels: a DIDS-sensitive (swelling-activated) channel, and a DIDS-insensitive (niflumic acid-sensitive) Cl(-) channel. Anion permeability of the DIDS-insensitive Cl(-) current differed from that of the compound Cl(-) current: Rank order of anion permeability of the DIDS-sensitive Cl(-) channels was I(-) = Br(-) > Cl(-) > gluconate(-), whereas that of the DIDS-insensitive Cl(-) channel was I(-) = Br(-) > Cl(-) >> gluconate(-). These results indicate that early mouse embryos have a Cl(-) channel that is highly permeable to amino acids, which may regulate intracellular amino acid concentration.