Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 80(6): 1039-1054.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33301732

RESUMO

Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities. Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing single-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These results demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices and might modulate DNA topology by plectoneme stabilization and local compaction.


Assuntos
Proteínas de Ciclo Celular/genética , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Fenômenos Biofísicos , Proteínas de Ciclo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Ligação a DNA/genética , Humanos , Interfase/genética , Mitose/genética , Complexos Multiproteicos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sumoilação/genética , Coesinas
2.
Proc Natl Acad Sci U S A ; 119(15): e2112376119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385349

RESUMO

Human DNA helicase B (HELB) is a poorly characterized helicase suggested to play both positive and negative regulatory roles in DNA replication and recombination. In this work, we used bulk and single-molecule approaches to characterize the biochemical activities of HELB protein with a particular focus on its interactions with Replication Protein A (RPA) and RPA­single-stranded DNA (ssDNA) filaments. HELB is a monomeric protein that binds tightly to ssDNA with a site size of ∼20 nucleotides. It couples ATP hydrolysis to translocation along ssDNA in the 5' to 3' direction accompanied by the formation of DNA loops. HELB also displays classical helicase activity, but this is very weak in the absence of an assisting force. HELB binds specifically to human RPA, which enhances its ATPase and ssDNA translocase activities but inhibits DNA unwinding. Direct observation of HELB on RPA nucleoprotein filaments shows that translocating HELB concomitantly clears RPA from ssDNA. This activity, which can allow other proteins access to ssDNA intermediates despite their shielding by RPA, may underpin the diverse roles of HELB in cellular DNA transactions.


Assuntos
DNA Helicases , DNA de Cadeia Simples , Proteínas Motores Moleculares , Proteína de Replicação A , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Humanos , Hidrólise , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Ligação Proteica , Proteína de Replicação A/metabolismo
3.
Nanotechnology ; 26(48): 485706, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26559931

RESUMO

Multifrequency atomic force microscopy (AFM) in liquid media where several eigenmodes or harmonics are simultaneously excited is improving the performance of the scanning probe techniques in biological studies. As a consequence, an important effort is being made to search for a reliable, efficient and strong cantilever high mode excitation method that operates in liquids. In this work we present (theoretical and experimentally) a technique for improving the efficiency of the most common excitation methods currently used in AFM operated in liquids: photothermal, torque (MAC Mode™) and magnetostriction. By etching specific areas of the cantilever coating, the oscillation amplitude (both flexural and torsional) of each specific eigenmode increases, leading to an improvement in signal to noise ratio of the multifrequency techniques. As an alternative, increment in high mode oscillation amplitude is also obtained by Ga(+) ion implantation in the specific areas of the magnetic material.

4.
Small ; 10(2): 376-84, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24106098

RESUMO

Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes in the vicinity of a single optically trapped spherical Au nanoparticle encapsulated in a thermo-responsive poly(N-isopropylacrylamide) shell (Au@pNIPAM) are studied in detail. Individual beads are trapped in a counter-propagating optical tweezers setup at various laser powers, which allows the overall particle size to be tuned through the phase transition of the thermo-responsive shell. The experimentally obtained sizes measured at different irradiation powers are compared with average size values obtained by dynamic light scattering (DLS) from an ensemble of beads at different temperatures. The size range and the tendency to shrink upon increasing the laser power in the optical trap or by increasing the temperature for DLS agree with reasonable accuracy for both approaches. Discrepancies are evaluated by means of simple models accounting for variations in the thermal conductivity of the polymer, the viscosity of the aqueous solution and the absorption cross section of the coated Au nanoparticle. These results show that these parameters must be taken into account when considering local laser heating experiments in aqueous solution at the nanoscale. Analysis of the stability of the Au@pNIPAM particles in the trap is also theoretically carried out for different particle sizes.

5.
Nanotechnology ; 24(39): 395701, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24008394

RESUMO

The tip apex dimensions and geometry of the conductive probe remain the major limitation to the resolution of Kelvin probe force microscopy (KPFM). One of the possible strategies to improve the spatial resolution of surface potential images consists in the development of thinner and more durable conductive tips. In an effort to improve the lateral resolution of topography and surface potential maps, we have evaluated high aspect ratio conductive tips created by depositing gold nanoparticles on standard silicon tips. Besides the already known general topographic resolution enhancement offered by these modified tips, an improvement of surface potential lateral resolution and signal-to-noise ratio is reported here for a variety of samples as compared to other regular conductive probes. We have also observed that the modified conductive tips have a significant auto-regeneration capability, which stems from a certain level of mobility of the nanoparticle coating. This property makes the modified tips highly resistant to degradation during scanning, thus increasing their durability. As demonstrated by the heterogeneous set of structures measured in the present study performed in air, the nanoparticle coated tips are suitable for KPFM analysis. In particular, surface potential difference determination on graphene deposited on silicon, gold sputtered on a salt surface, large and mildly rough areas of ZnO films and small DNA molecules on insulating mica have been achieved with enhanced resolution.

6.
Nano Lett ; 11(11): 4742-7, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22003895

RESUMO

Optical and hydrodynamic-size studies on single bare thermo-responsive microspheres, and microspheres covered either with Au nanoparticles, CdSe/CdS quantum dots, or a combination of both have been performed by optical tweezers. The photothermal heating of water in the focal region boosts the shrinkage of the microspheres, an effect that is intensified in the presence of Au nanoparticles. In contrast, bigger microspheres are measured when they are covered with quantum dots. Plasmon-exciton interactions are observable in the trap in the combined Au and quantum dots hybrid systems.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pinças Ópticas , Ressonância de Plasmônio de Superfície/métodos , Temperatura Alta , Teste de Materiais , Nanoestruturas/efeitos da radiação , Tamanho da Partícula
7.
Methods Enzymol ; 673: 311-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965011

RESUMO

Single molecule biophysics experiments for the study of DNA-protein interactions usually require production of a homogeneous population of long DNA molecules with controlled sequence content and/or internal tertiary structures. Traditionally, Lambda phage DNA has been used for this purpose, but it is difficult to customize. In this article, we provide a detailed and simple protocol for cloning large (~25kbp) plasmids with bespoke sequence content, which can be used to generate custom DNA constructs for a range of single-molecule experiments. In particular, we focus on a procedure for making long single-stranded DNA (ssDNA) molecules, ssDNA-dsDNA hybrids and long DNA constructs with flaps, which are especially relevant for studying the activity of DNA helicases and translocases. Additionally, we describe how the modification of the free ends of such substrates can facilitate their binding to functionalized surfaces allowing immobilization and imaging using dual optical tweezers and confocal microscopy. Finally, we provide examples of how these DNA constructs have been applied to study the activity of human DNA helicase B (HELB). The techniques described herein are simple, versatile, adaptable, and accessible to any laboratory with access to standard molecular biology methods.


Assuntos
Ácidos Nucleicos , Pinças Ópticas , DNA/química , DNA Helicases/metabolismo , DNA de Cadeia Simples , Humanos
8.
Biophys J ; 100(8): 1996-2005, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21504736

RESUMO

The sequence of a DNA molecule is known to influence its secondary structure and flexibility. Using a combination of bulk and single-molecule techniques, we measure the structural and mechanical properties of two DNAs which differ in both sequence and base-stacking arrangement in aqueous buffer, as revealed by circular dichroism: one with 50% G·C content and B-form and the other with 70% G·C content and A-form. Atomic force microscopy measurements reveal that the local A-form structure of the high-G·C DNA does not lead to a global contour-length decrease with respect to that of the molecule in B-form although it affects its persistence length. In the presence of force, however, the stiffness of high-G·C content DNA is similar to that of balanced-G·C DNA as magnetic and optical tweezers measured typical values for the persistence length of both DNA substrates. This indicates that sequence-induced local distortions from the B-form are compromised under tension. Finally, high-G·C DNA is significantly harder to stretch than 50%-G·C DNA as manifested by a larger stretch modulus. Our results show that a local, basepair configuration of DNA induced by high-G·C content influences the stretching elasticity of the polymer but that it does not affect the global, double-helix arrangement.


Assuntos
Pareamento de Bases , DNA Forma A/química , Fenômenos Mecânicos , Composição de Bases , Fenômenos Biomecânicos , DNA Bacteriano/química , Elasticidade , Magnetismo , Microscopia de Força Atômica , Pinças Ópticas , Streptomyces
9.
Biophys J ; 100(8): 2006-15, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21504737

RESUMO

B-A transition and DNA condensation are processes regulated by base sequence and water activity. The constraints imposed by interhelical interactions in condensation compromise the observation of the mechanism by which B and A base-stacking modes influence the global state of the molecule. We used a single-molecule approach to prevent aggregation and mechanical force to control the intramolecular chain association involved in condensation. Force-extension experiments with optical tweezers revealed that DNA stretches as B-DNA under ethanol and spermine concentrations that favor the A-form. Moreover, we found no contour-length change compatible with a cooperative transition between the A and B forms within the intrinsic-force regime. Experiments performed at constant force in the entropic-force regime with magnetic tweezers similarly did not show a bistable contraction of the molecules that could be attributed to the B-A transition when the physiological buffer was replaced by a water-ethanol mixture. A total, stepwise collapse was found instead, which is characteristic of DNA condensation. Therefore, a low-humidity-induced change from the B- to the A-form base-stacking alone does not lead to a contour-length shortening. These results support a mechanism for the B-A transition in which low-humidity conditions locally change the base-stacking arrangement and globally induce DNA condensation, an effect that may eventually stabilize a molecular contour-length reduction.


Assuntos
DNA Forma A/química , DNA/química , Umidade , Transição de Fase , Pareamento de Bases , Fenômenos Biomecânicos , DNA Bacteriano/química , Elasticidade , Etanol/química , Magnetismo , Pinças Ópticas , Streptomyces , Água/química
10.
Sci Rep ; 10(1): 18069, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093484

RESUMO

Single-molecule experiments usually take place in flow cells. This experimental approach is essential for experiments requiring a liquid environment, but is also useful to allow the exchange of reagents before or during measurements. This is crucial in experiments that need to be triggered by ligands or require a sequential addition of proteins. Home-fabricated flow cells using two glass coverslips and a gasket made of paraffin wax are a widespread approach. The volume of the flow cell can be controlled by modifying the dimensions of the channel while the reagents are introduced using a syringe pump. In this system, high flow rates disturb the biological system, whereas lower flow rates lead to the generation of a reagent gradient in the flow cell. For very precise measurements it is thus desirable to have a very fast exchange of reagents with minimal diffusion. We propose the implementation of multistream laminar microfluidic cells with two inlets and one outlet, which achieve a minimum fluid switching time of 0.25 s. We additionally define a phenomenological expression to predict the boundary switching time for a particular flow cell cross section. Finally, we study the potential applicability of the platform to study kinetics at the single molecule level.

11.
Biopolymers ; 97(4): 199-208, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22020764

RESUMO

DNA electrostatic character is mostly determined by both water and counterions activities in the phosphate backbone, which together with base sequence, further confer its higher order structure. The authors overstretch individual double-stranded DNA molecules in water-ethanol solutions to investigate the modulation of its mechanical stability by hydration and polycations. The authors found that DNA denatures as ethanol concentration is increased and spermine concentration decreased. This is manifested by an increase in melting hysteresis between the stretch and release curves, with sharp transition at 10% ethanol and reentrant behavior at 60%, by a loss of cooperativity in the overstretching transition and by a dramatic decrease of both the persistence length and the flexural rigidity. Changes in base-stacking stability which are characteristic of the B-A transition between 70 and 80% ethanol concentration do not manifest in the mechanical properties of the double-helical molecule at low or high force or in the behavior of the overstretching and melting transitions within this ethanol concentration range. This is consistent with a mechanism in which A-type base-stacking is unstable in the presence of tension. Binding of motor proteins to DNA locally reduces the number of water molecules and therefore, our results may shed light on analogous reduced-water activity of DNA conditions caused by other molecules, which interact with DNA in vivo.


Assuntos
Biofísica , DNA/química , Conformação de Ácido Nucleico , Água/química , Fenômenos Biomecânicos , Dicroísmo Circular , DNA/metabolismo , Módulo de Elasticidade , Elasticidade , Etanol/química , Umidade , Desnaturação de Ácido Nucleico , Poliaminas/química , Polieletrólitos , Espermina/química , Termodinâmica , Água/metabolismo
12.
Biol Cell ; 98(12): 679-95, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17105446

RESUMO

Force and torque, stress and strain or work are examples of mechanical and elastic actions which are intimately linked to chemical reactions in the cell. Optical tweezers are a light-based method which allows the real-time manipulation of single molecules and cells to measure their interactions. We describe the technique, briefly reviewing the operating principles and the potential capabilities to the study of biological processes. Additional emphasis is given to the importance of fluctuations in biology and how single-molecule techniques allow access to them. We illustrate the applications by addressing experimental configurations and recent progresses in molecular and cell biology.


Assuntos
Bioquímica/métodos , Células Eucarióticas/química , Células Eucarióticas/fisiologia , Biologia Molecular/métodos , Pinças Ópticas/normas , Animais , Bioquímica/instrumentação , Bioquímica/tendências , Fenômenos Biomecânicos/instrumentação , Fenômenos Biomecânicos/métodos , Fenômenos Biomecânicos/tendências , Biofísica/instrumentação , Biofísica/métodos , Biofísica/tendências , Dissecação/instrumentação , Dissecação/métodos , Dissecação/tendências , Células Eucarióticas/ultraestrutura , Humanos , Biologia Molecular/instrumentação , Biologia Molecular/tendências , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Ácidos Nucleicos/química , Ácidos Nucleicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA