Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2404351, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161205

RESUMO

Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.

2.
Nat Protoc ; 19(6): 1591-1622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38413781

RESUMO

Engineered by nature, biological entities are exceptional building blocks for biomaterials. These entities can impart enhanced functionalities on the final material that are otherwise unattainable. However, preserving the bioactive functionalities of these building blocks during the material fabrication process remains a challenge. We describe a high-throughput protocol for the bottom-up self-assembly of highly concentrated phages into microgels while preserving and amplifying their inherent antimicrobial activity and biofunctionality. Each microgel is comprised of half a million cross-linked phages as the sole structural component, self-organized in aligned bundles. We discuss common pitfalls in the preparation procedure and describe optimization processes to ensure the preservation of the biofunctionality of the phage building blocks. This protocol enables the production of an antimicrobial spray containing the manufactured phage microgels, loaded with potent virulent phages that effectively reduced high loads of multidrug-resistant Escherichia coli O157:H7 on red meat and fresh produce. Compared with other microgel preparation methods, our protocol is particularly well suited to biological materials because it is free of organic solvents and heat. Bench-scale preparation of base materials, namely microporous films (the template for casting microgels) and pure concentrated phage suspension, requires 3.5 h and 5 d, respectively. A single production run, that yields over 1,750,000 microgels, ranges from 2 h to 2 d depending on the rate of cross-linking chemistry. We expect that this platform will address bottlenecks associated with shelf-stability, preservation and delivery of phage for antimicrobial applications, expanding the use of phage for prevention and control of bacterial infections and contaminants.


Assuntos
Bacteriófagos , Microgéis , Microgéis/química , Escherichia coli O157/virologia , Escherichia coli O157/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Descontaminação/métodos , Microbiologia de Alimentos/métodos
3.
Nat Commun ; 15(1): 5626, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992046

RESUMO

As bacteriophages continue to gain regulatory approval for personalized human therapy against antibiotic-resistant infections, there is a need for transformative technologies for rapid target identification through multiple, large, decentralized therapeutic phages biobanks. Here, we design a high throughput phage screening platform comprised of a portable library of individual shelf-stable, ready-to-use phages, in all-inclusive solid tablets. Each tablet encapsulates one phage along with luciferin and luciferase enzyme stabilized in a sugar matrix comprised of pullulan and trehalose capable of directly detecting phage-mediated adenosine triphosphate (ATP) release through ATP bioluminescence reaction upon bacterial cell burst. The tablet composition also enhances desiccation tolerance of all components, which should allow easier and cheaper international transportation of phages and as a result, increased accessibility to therapeutic phages. We demonstrate high throughput screening by identifying target phages for select multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli, and Staphylococcus aureus with targets identified within 30-120 min.


Assuntos
Bacteriófagos , Escherichia coli , Ensaios de Triagem em Larga Escala , Terapia por Fagos , Medicina de Precisão , Staphylococcus aureus , Humanos , Terapia por Fagos/métodos , Ensaios de Triagem em Larga Escala/métodos , Escherichia coli/virologia , Escherichia coli/metabolismo , Escherichia coli/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Staphylococcus aureus/virologia , Medicina de Precisão/métodos , Pseudomonas aeruginosa/virologia , Trifosfato de Adenosina/metabolismo , Salmonella enterica/virologia , Farmacorresistência Bacteriana Múltipla/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA