Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2312007, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708799

RESUMO

Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.

2.
Environ Sci Technol ; 57(48): 19223-19235, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933439

RESUMO

Insights into how biological systems respond to high- and low-dose acute environmental stressors are a fundamental aspect of exposome research. However, studying the impact of low-level environmental exposure in conventional in vitro settings is challenging. This study employed a three-dimensional (3D) biomimetic microfluidic lung-on-chip (µLOC) platform and RNA-sequencing to examine the effects of two model anthropogenic engineered nanoparticles (NPs): zinc oxide nanoparticles (Nano-ZnO) and copier center nanoparticles (Nano-CCP). The airway epithelium exposed to these NPs exhibited dose-dependent increases in cytotoxicity and barrier dysregulation (dominance of the external exposome). Interestingly, even nontoxic and low-level exposure (10 µg/mL) of the epithelium compartment to Nano-ZnO triggered chemotaxis of lung fibroblasts toward the epithelium. An increase in α smooth muscle actin (α-SMA) expression and contractile activity was also observed in these cells, indicating a bystander-like adaptive response (dominance of internal exposome). Further bioinformatics and network analysis showed that a low-dose Nano-ZnO significantly induced a robust transcriptomic response and upregulated several hub genes associated with the development of lung fibrosis. We propose that Nano-ZnO, even at a no observable effect level (NOEL) dose according to conventional standards, can function as a potent nanostressor to disrupt airway epithelium homeostasis. This leads to a cascade of profibrotic events in a cross-tissue compartment fashion. Our findings offer new insights into the early acute events of respiratory harm associated with environmental NPs exposure, paving the way for better exposomic understanding of this emerging class of anthropogenic nanopollutants.


Assuntos
Expossoma , Nanopartículas , Óxido de Zinco , Biomimética , Microfluídica , Nanopartículas/toxicidade , Fibroblastos , Óxido de Zinco/toxicidade
3.
BMC Biol ; 20(1): 47, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164755

RESUMO

BACKGROUND: Polypoidal choroidal vasculopathy (PCV), a subtype of age-related macular degeneration (AMD), is a global leading cause of vision loss in older populations. Distinct from typical AMD, PCV is characterized by polyp-like dilatation of blood vessels and turbulent blood flow in the choroid of the eye. Gold standard anti-vascular endothelial growth factor (anti-VEGF) therapy often fails to regress polypoidal lesions in patients. Current animal models have also been hampered by their inability to recapitulate such vascular lesions. These underscore the need to identify VEGF-independent pathways in PCV pathogenesis. RESULTS: We cultivated blood outgrowth endothelial cells (BOECs) from PCV patients and normal controls to serve as our experimental disease models. When BOECs were exposed to heterogeneous flow, single-cell transcriptomic analysis revealed that PCV BOECs preferentially adopted migratory-angiogenic cell state, while normal BOECs undertook proinflammatory cell state. PCV BOECs also had a repressed protective response to flow stress by demonstrating lower mitochondrial functions. We uncovered that elevated hyaluronidase-1 in PCV BOECs led to increased degradation of hyaluronan, a major component of glycocalyx that interfaces between flow stress and vascular endothelium. Notably, knockdown of hyaluronidase-1 in PCV BOEC improved mechanosensitivity, as demonstrated by a significant 1.5-fold upregulation of Krüppel-like factor 2 (KLF2) expression, a flow-responsive transcription factor. Activation of KLF2 might in turn modulate PCV BOEC migration. Barrier permeability due to glycocalyx impairment in PCV BOECs was also reversed by hyaluronidase-1 knockdown. Correspondingly, hyaluronidase-1 was detected in PCV patient vitreous humor and plasma samples. CONCLUSIONS: Hyaluronidase-1 inhibition could be a potential therapeutic modality in preserving glycocalyx integrity and endothelial stability in ocular diseases with vascular origin.


Assuntos
Hialuronoglucosaminidase , Degeneração Macular , Idoso , Corioide/irrigação sanguínea , Corioide/patologia , Células Endoteliais , Angiofluoresceinografia , Glicocálix/patologia , Humanos , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/uso terapêutico , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia
4.
Small ; 18(18): e2104822, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253966

RESUMO

The intrinsic biophysical states of neutrophils are associated with immune dysfunctions in diseases. While advanced image-based biophysical flow cytometers can probe cell deformability at high throughput, it is nontrivial to couple different sensing modalities (e.g., electrical) to measure other critical cell attributes including cell viability and membrane integrity. Herein, an "optics-free" impedance-deformability cytometer for multiparametric single cell mechanophenotyping is reported. The microfluidic platform integrates hydrodynamic cell pinching, and multifrequency impedance quantification of cell size, deformability, and membrane impedance (indicative of cell viability and activation). A newly-defined "electrical deformability index" is validated by numerical simulations, and shows strong correlations with the optical cell deformability index of HL-60 experimentally. Human neutrophils treated with various biochemical stimul are further profiled, and distinct differences in multimodal impedance signatures and UMAP analysis are observed. Overall, the integrated cytometer enables label-free cell profiling at throughput of >1000 cells min-1 without any antibodies labeling to facilitate clinical diagnostics.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Impedância Elétrica , Citometria de Fluxo , Células HL-60 , Humanos , Neutrófilos
5.
Small ; 18(6): e2104470, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34984816

RESUMO

Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease-specific biomolecular cargoes and importance in cell-cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50-200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV-protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (µSEC) is fabricated using thiol-ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on-chip nanoliter sample plug injection (600 nL) using a modified T-junction injector is first demonstrated with rapid flow switching response time (<1.5 s). Device performance is validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF-7)-derived EVs. As a proof-of-concept for clinical applications, EVs are directly isolated from undiluted human platelet-poor plasma using µSEC and show distinct elution profiles between EVs and proteins based on nanoparticle particle analysis (NTA), Western blot and flow cytometry analysis. Overall, the optically transparent µSEC can be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.


Assuntos
Vesículas Extracelulares , Microfluídica , Proteínas Sanguíneas/metabolismo , Cromatografia em Gel , Vesículas Extracelulares/metabolismo , Humanos , Plasma
6.
Anal Chem ; 93(30): 10462-10468, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34289696

RESUMO

Single-cell metabolite measurement remains highly challenging due to difficulties related to single cell isolation, metabolite detection, and identification of low levels of metabolites. Here, as a first step of the technological development, we propose a novel strategy integrating spiral inertial microfluidics and ion mobility mass spectrometry (IM-MS) for single-cell metabolite detection and identification. Cells in methanol suspension are inertially focused into a single stream in the spiral microchannel. This stream of separated cells is delivered to the nanoelectrospray needle to be lysed and ionized and subsequently analyzed in real time by IM-MS. This analytical system enables six to eight single-cell metabolic fingerprints to be collected per minute, including gas-phase collisional cross section (CCS) measurements as an additional molecular descriptor, giving increased confidence in metabolite identification. As a proof of concept, the metabolic profiles of three types of cancer cells (U2OS, HepG2, and HepG2.215) were successfully screened, and 19 distinct lipids species were identified with CCS value filtering. Furthermore, principal component analysis (PCA) showed differentiation of the three cancer cell lines, mainly due to cellular surface phospholipids. Taken together, our technology platform offers a simple and efficient method for single-cell lipid profiling, with additional ion mobility separation of lipids significantly improving the confidence toward identification of metabolites.


Assuntos
Espectrometria de Mobilidade Iônica , Microfluídica , Humanos , Lipídeos , Espectrometria de Massas , Metaboloma
7.
Small ; 17(21): e2007500, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759381

RESUMO

3D cellular spheroids/microcarriers (100 µm-1 mm) are widely used in biomanufacturing, and non-invasive biosensors are useful to monitor cell quality in bioprocesses. In this work, a novel microfluidic approach for label-free and continuous-flow monitoring of single spheroid/microcarrier (hydrogel and Cytodex) based on electrical impedance spectroscopy using co-planar Field's metal electrodes is reported. Through numerical simulation and experimental validation, two unique impedance signatures (|ZLF | (60 kHz), |ZHF | (1 MHz)) which are optimal for spheroid growth and viability monitoring are identified. Using a closed-loop recirculation system, it is demonstrated that |ZLF | increases with breast cancer (MCF-7) spheroid biomass, while higher opacity (impedance ratio |ZHF |/|ZLF |) indicates cell death due to compromised cell membrane. Anti-cancer drug (paclitaxel)-treated spheroids also exhibit lower |ZLF | with increased cell dissociation. Interestingly, impedance characterization of adipose-derived mesenchymal stem cell differentiation on Cytodex microcarriers reveals that adipogenic cells (higher intracellular lipid content) exhibit higher impedance than osteogenic cells (more conductive due to calcium ions) for both microcarriers and single cell level. Taken together, the developed platform offers great versatility for multi-parametric analysis of spheroids/microcarriers at high throughput (≈1 particle/s), and can be readily integrated into bioreactors for long-term and remote monitoring of biomass and cell quality.


Assuntos
Células-Tronco Mesenquimais , Microfluídica , Diferenciação Celular , Impedância Elétrica , Esferoides Celulares
8.
FASEB J ; 34(8): 11133-11142, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627899

RESUMO

Vitamin D deficiency is a major public health problem worldwide, linked to several chronic diseases including cardiovascular diseases. While immunomodulatory effects of vitamin D on monocytes have been reported in cardiovascular and metabolic diseases, there is limited understanding on monocyte phenotype in healthy individuals with suboptimal vitamin D levels and without any clinical diseases. In this work, we performed label-free, microfluidic isolation of monocytes, and characterized their functional phenotype using flow cytometry and in vitro vascular models in healthy subjects with (n = 7) and without vitamin D deficiency (n = 16). Vitamin D deficient (VitD-Def) subjects (25(OH)D3 level < 26 ng/mL) expressed significant downregulation of vitamin D receptor (VDR) on monocytes as compared to controls (P < .0001), and VDR expression was well-associated with serum 25(OH)D3 levels. Increased monocyte-platelet aggregates (MPA), a marker for platelet activation, were also observed in VitD-Def subjects (P < .05) which suggests a pro-inflammatory monocyte phenotype. Monocyte adhesion to endothelial cells, an early-stage atherosclerosis event, was also higher in VitD-Def individuals, and inversely correlated to serum 25(OH)D3 level (P < .05). Taken together, these results indicate the pro-inflammatory state and atherogenic potential of monocytes in VitD-Def healthy subjects, and propound the use of vitamin D supplementation as a prospective immunomodulatory and anti-inflammatory therapy in atherosclerosis.


Assuntos
Plaquetas/fisiologia , Adesão Celular/fisiologia , Células Endoteliais/fisiologia , Monócitos/fisiologia , Deficiência de Vitamina D/fisiopatologia , Vitamina D/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Plaquetas/metabolismo , Células Cultivadas , Suplementos Nutricionais , Regulação para Baixo/fisiologia , Células Endoteliais/metabolismo , Feminino , Voluntários Saudáveis , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Monócitos/metabolismo , Ativação Plaquetária/fisiologia , Receptores de Calcitriol/metabolismo , Deficiência de Vitamina D/metabolismo
9.
Small ; 16(34): e2003757, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32686344

RESUMO

Exogenous sources of amino acids are essential nutrients to fuel cancer growth. Here, the increased demand for amino acid displayed by cancer cells is unconventionally exploited as a design principle to replete cancer cells with apoptosis inducing nanoscopic porous amino acid mimics (Nano-PAAM). A small library consisting of nine essential amino acids nanoconjugates (30 nm) are synthesized, and the in vitro anticancer activity is evaluated. Among the Nano-PAAMs, l-phenylalanine functionalized Nano-PAAM (Nano-pPAAM) has emerged as a novel nanotherapeutics with excellent intrinsic anticancer and cancer-selective properties. The therapeutic efficacy of Nano-pPAAM against a panel of human breast, gastric, and skin cancer cells could be ascribed to the specific targeting of the overexpressed human large neutral amino acid transporter SLC7A5 (LAT-1) in cancer cells, and its intracellular reactive oxygen species (ROS) inducing properties of the nanoporous core. At the mechanistic level, it is revealed that Nano-pPAAM could activate both the extrinsic and intrinsic apoptosis pathways to exert a potent "double-whammy" anticancer effect. The potential clinical utility of Nano-pPAAM is further investigated using an MDA-MB-231 xenograft in NOD scid gamma mice, where an overall suppression of tumor growth by 60% is achieved without the aid of any drugs or application of external stimuli.


Assuntos
Antineoplásicos , Aminoácidos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Camundongos , Nanoconjugados , Porosidade
10.
Anal Chem ; 90(24): 14535-14542, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30426739

RESUMO

Monocytes and platelets play key roles in atherosclerosis and thrombosis, and circulating monocyte-platelet aggregates (MPA) in blood have been widely proposed as surrogate biomarkers for cardiovascular risk stratification and monitoring antiplatelet therapies. However, conventional MPA characterization is based on whole-blood fixation and flow cytometry analysis which adversely affect cell viability and detection accuracy due to significant leukocyte and platelet contaminations. Herein, we introduce a rapid and label-free microfluidic approach for complete size-based fractionation of peripheral blood mononuclear cells (PBMCs) into monocytes, lymphocytes, and platelets. The developed biochip enables gentle sorting of intact MPA in the enriched monocytes with efficient depletion of lymphocytes and platelets for accurate MPA quantification. We first compared the developed microfluidic technology (dean flow fractionation, DFF) with standard magnetic negative isolation (MACS) and observed that DFF-sorted monocytes had similar viability, purity, and key immune functions (phagocytosis, macrophage differentiation) as MACS-sorted monocytes. As proof of concept for diabetes testing, we isolated and characterized monocytes/MPA from a cohort of healthy ( n = 5) and type 2 diabetes mellitus (T2DM) subjects ( n = 8) in PBMCs and DFF-sorted monocytes. High-speed imaging, immunofluorescence, and flow cytometry analysis clearly indicated higher levels of MPA in T2DM patients ( P < 0.05) with enhanced MPA detection sensitivity in DFF-sorted monocytes ( P < 0.05). Taken together, the developed DFF technology greatly facilitates high-throughput (∼130 µL min-1) label-free isolation of monocyte/MPA from PBMCs and can be further developed into a clinical tool for point-of-care cardiovascular risk stratification in metabolic disorders including T2DM.


Assuntos
Plaquetas/citologia , Microfluídica/métodos , Monócitos/citologia , Plaquetas/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/citologia , Microscopia de Fluorescência , Monócitos/metabolismo , Fagocitose
11.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29168915

RESUMO

Neutrophil dysfunction is strongly linked to type 2 diabetes mellitus (T2DM) pathophysiology, but the prognostic potential of neutrophil biomarkers remains largely unexplored due to arduous leukocyte isolation methods. Herein, a novel integrated microdevice is reported for single-step neutrophil sorting and phenotyping (chemotaxis and formation of neutrophil extracellular traps (NETosis)) using small blood volumes (fingerprick). Untouched neutrophils are purified on-chip from whole blood directly using biomimetic cell margination and affinity-based capture, and are exposed to preloaded chemoattractant or NETosis stimulant to initiate chemotaxis or NETosis, respectively. Device performance is first characterized using healthy and in vitro inflamed blood samples (tumor necrosis factor alpha, high glucose), followed by clinical risk stratification in a cohort of subjects with T2DM. Interestingly, "high-risk" T2DM patients characterized by severe chemotaxis impairment reveal significantly higher C-reactive protein levels and poor lipid metabolism characteristics as compared to "low-risk" subjects, and their neutrophil chemotaxis responses can be mitigated after in vitro metformin treatment. Overall, this unique and user-friendly microfluidics immune health profiling strategy can significantly aid the quantification of chemotaxis and NETosis in clinical settings, and be further translated into a tool for risk stratification and precision medicine methods in subjects with metabolic diseases such as T2DM.


Assuntos
Separação Celular/instrumentação , Diabetes Mellitus Tipo 2/sangue , Imunofenotipagem , Neutrófilos/citologia , Biomarcadores/sangue , Biomimética , Quimiotaxia de Leucócito , Diabetes Mellitus Tipo 2/tratamento farmacológico , Armadilhas Extracelulares , Humanos , Hipoglicemiantes/uso terapêutico , Dispositivos Lab-On-A-Chip , Metformina/uso terapêutico , Neutrófilos/imunologia , Estudo de Prova de Conceito
12.
AAPS PharmSciTech ; 18(7): 2648-2657, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28251512

RESUMO

Rapamycin is commonly used in chemotherapy and posttransplantation rejection suppression, where sustained release is preferred. Conventionally, rapamycin has to be administered in excess due to its poor solubility, and this often leads to cytotoxicity and undesirable side effects. In addition, rapamycin has been shown to be hydrolytically unstable, losing its bioactivity within a few hours. The use of drug delivery systems is hypothesized to preserve the bioactivity of rapamycin, while providing controlled release of this otherwise potent drug. This paper reports on the use of microparticles (MP) as a means to tune and sustain the delivery of bioactive rapamycin for up to 30 days. Rapamycin was encapsulated (100% efficiency) in poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or a mixture of both via an emulsion method. The use of different polymer types and mixture was shown to achieve a variety of release kinetics and profile. Released rapamycin was subsequently evaluated against breast cancer cell (MCF-7) and human lymphocyte cell (Jurkat). Inhibition of cell proliferation was in good agreement with in vitro release profiles, which confirmed the intact bioactivity of rapamycin. For Jurkat cells, the suppression of cell growth was proven to be effective up to 20 days, a duration significantly longer than free rapamycin. Taken together, these results demonstrate the ability to tune, sustain, and preserve the bioactivity of rapamycin using MP formulations. The sustained delivery of rapamycin could lead to better therapeutic effects than bolus dosage, at the same time improving patient compliance due to its long-acting duration.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Imunossupressores/administração & dosagem , Sirolimo/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Imunossupressores/farmacologia , Células Jurkat , Células MCF-7 , Sirolimo/química , Sirolimo/farmacologia , Solubilidade
13.
Adv Healthc Mater ; 13(18): e2304529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38465888

RESUMO

There is a paradigm shift in biomanufacturing toward continuous bioprocessing but cell-based manufacturing using adherent and suspension cultures, including microcarriers, hydrogel microparticles, and 3D cell aggregates, remains challenging due to the lack of efficient in-line bioprocess monitoring and cell harvesting tools. Herein, a novel label-free microfluidic platform for high throughput (≈50 particles/sec) impedance bioanalysis of biomass, cell viability, and stem cell differentiation at single particle resolution is reported. The device is integrated with a real-time piezo-actuated particle sorter based on user-defined multi-frequency impedance signatures. Biomass profiling of Cytodex-3 microcarriers seeded with adipose-derived mesenchymal stem cells (ADSCs) is first performed to sort well-seeded or confluent microcarriers for downstream culture or harvesting, respectively. Next, impedance-based isolation of microcarriers with osteogenic differentiated ADSCs is demonstrated, which is validated with a twofold increase of calcium content in sorted ADSCs. Impedance profiling of heterogenous ADSCs-encapsulated hydrogel (alginate) microparticles and 3D ADSC aggregate mixtures is also performed to sort particles with high biomass and cell viability to improve cell quality. Overall, the scalable microfluidic platform technology enables in-line sample processing from bioreactors directly and automated analysis of cell quality attributes to maximize cell yield and improve the control of cell quality in continuous cell-based manufacturing.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Diferenciação Celular , Sobrevivência Celular , Hidrogéis/química , Agregação Celular , Separação Celular/métodos , Alginatos/química , Tecido Adiposo/citologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação
14.
ACS Nano ; 18(8): 6623-6637, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38348825

RESUMO

Cell-free RNAs and extracellular vesicles (EVs) are valuable biomarkers in liquid biopsies, but they are prone to preanalytical variabilities such as nonstandardized centrifugation or ex vivo blood degradation. Herein, we report a high-throughput and label-free inertial microfluidic device (ExoArc) for isolation of platelet-free plasma from blood for RNA and EV analysis. Unlike conventional inertial microfluidic devices widely used for cell sorting, a submicrometer size cutoff (500 nm) was achieved which completely removed all leukocytes, RBCs, platelets, and cellular debris based on differential lateral migration induced by Dean vortices. The single-step operation also reduced platelet-associated miRNAs (∼2-fold) compared to centrifugation. We clinically validated ExoArc for plasma miRNA profiling (39 samples) and identified a 7-miRNA panel that detects non-small cell lung cancer with ∼90% sensitivity. ExoArc was also coupled with size exclusion chromatography (SEC) to isolate EVs within 50 min with ∼10-fold higher yield than ultracentrifugation. As a proof-of-concept for EV-based transcriptomics analysis, we performed miRNA analysis in healthy and type 2 diabetes mellitus (T2DM) subjects (n = 3 per group) by coupling ExoArc and ExoArc+SEC with quantitative polymerase chain reaction (RT-qPCR) assay. Among 293 miRNAs detected, plasmas and EVs showed distinct differentially expressed miRNAs in T2DM subjects. We further demonstrated automated in-line EV sorting from low volume culture media for continuous EV monitoring. Overall, the developed ExoArc offers a convenient centrifugation-free workflow to automate plasma and EV isolation for point-of-care diagnostics and quality control in EV manufacturing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Microfluídica , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo
15.
Lab Chip ; 23(18): 3936-3944, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584074

RESUMO

Neutrophils are the most abundant circulating white blood cells and one of their critical functions to eliminate pathogenic threats includes the release of extracellular DNA, also known as neutrophil extracellular traps (NETs), which is dysregulated in many diseases including cancer, type 2 diabetes mellitus and infectious diseases. Currently, conventional methods to quantify the NET formation (NETosis) rely on fluorescence antibody-based NET labelling or circulating NET-associated protein detection by ELISA, which are expensive, laborious, and time-consuming. In this work, we employed a novel "virtual staining" using deep convolutional neural networks (CNNs) to facilitate label-free quantification of NETs trapped in a micropillar array in a microfluidic device. Virtual staining is constructed to establish relations between morphological features in phase contrast images and fluorescence features in Sytox-green (DNA dye) images. We first investigated the effect of different learning rates on model training and optimized the learning rate to achieve the best model which can provide outputs close to Sytox green staining based on various reconstruction metrics (e.g., structural similarity (SSIM) and pixel-wise error (MAE, MSE)). The virtual staining of different NET concentrations was investigated which showed a linear correlation with fluorescent staining. As a proof of concept for clinical testing, the model was used to characterize purified neutrophils treated with NETosis inducers, including lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), and calcium ionophore (CaI), and successfully detected different NET profiles for different treatments. Collectively, these results demonstrated the potential of using deep learning for enhanced label-free image analysis of NETs for clinical research, drug discovery and point-of-care testing of diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Microfluídica , Diabetes Mellitus Tipo 2/metabolismo , Neutrófilos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , DNA/metabolismo
16.
Lab Chip ; 23(3): 410-420, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511820

RESUMO

Vascular stenosis caused by atherosclerosis instigates activation and aggregation of platelets, eventually resulting in thrombus formation. Although antiplatelet drugs are commonly used to inhibit platelet activation and aggregation, they unfortunately cannot prevent recurrent thrombotic events in patients with atherosclerosis. This is partially due to the limited understanding of the efficacy of antiplatelet drugs in the complex hemodynamic environment of vascular stenosis. Conventional methods for evaluating the efficacy of antiplatelet drugs under stenosis either fail to simulate the hemodynamic environment of vascular stenosis characterized by high shear stress and recirculatory flow or lack spatial resolution in their analytical techniques to statistically identify and characterize platelet aggregates. Here we propose and experimentally demonstrate a method comprising an in vitro 3D stenosis microfluidic chip and an optical time-stretch quantitative phase imaging system for studying the efficacy of antiplatelet drugs under stenosis. Our method simulates the atherogenic flow environment of vascular stenosis while enabling high-resolution and statistical analysis of platelet aggregates. Using our method, we distinguished the efficacy of three antiplatelet drugs, acetylsalicylic acid (ASA), cangrelor, and eptifibatide, for inhibiting platelet aggregation induced by stenosis. Specifically, ASA failed to inhibit stenosis-induced platelet aggregation, while eptifibatide and cangrelor showed high and moderate efficacy, respectively. Furthermore, we demonstrated that the drugs tested also differed in their efficacy for inhibiting platelet aggregation synergistically induced by stenosis and agonists (e.g., adenosine diphosphate, and collagen). Taken together, our method is an effective tool for investigating the efficacy of antiplatelet drugs under vascular stenosis, which could assist the development of optimal pharmacologic strategies for patients with atherosclerosis.


Assuntos
Aterosclerose , Trombose , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Eptifibatida/farmacologia , Constrição Patológica , Plaquetas , Aspirina/farmacologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Dispositivos Lab-On-A-Chip
17.
Lab Chip ; 23(5): 1226-1257, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655549

RESUMO

Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Separação Celular , Leucócitos , Testes Hematológicos , Biomarcadores
18.
Lab Chip ; 23(19): 4313-4323, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702123

RESUMO

The growing interest in regenerative medicine has opened new avenues for novel cell therapies using stem cells. Bone marrow aspirate (BMA) is an important source of stromal mesenchymal stem cells (MSCs). Conventional MSC harvesting from BMA relies on archaic centrifugation methods, often leading to poor yield due to osmotic stress, high centrifugation force, convoluted workflow, and long experimental time (∼2-3 hours). To address these issues, we have developed a scalable microfluidic technology based on deterministic lateral displacement (DLD) for MSC isolation. This passive, label-free cell sorting method capitalizes on the morphological differences between MSCs and blood cells (platelets and RBCs) for effective separation using an inverted L-shaped pillar array. To improve throughput, we developed a novel multi-chip DLD system that can process 2.5 mL of raw BMA in 20 ± 5 minutes, achieving a 2-fold increase in MSC recovery compared to centrifugation methods. Taken together, we envision that the developed DLD platform will enable fast and efficient isolation of MSCs from BMA for effective downstream cell therapy in clinical settings.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Microfluídica , Células-Tronco , Plaquetas
19.
ACS Sens ; 8(8): 3136-3145, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37477562

RESUMO

Urinary tract infection (UTI) diagnosis based on urine culture for bacteriuria analysis is time-consuming and often leads to wastage of hospital resources due to false-positive UTI cases. Direct cellular phenotyping (e.g., RBCs, neutrophils, epithelial cells) of urine samples remains a technical challenge as low cell concentrations, and urine characteristics (conductivities, pH, microbes) can affect the accuracy of cell measurements. In this work, we report a microfluidic inertial-impedance cytometry technique for label-free rapid (<5 min) neutrophil sorting and impedance profiling from urine directly. Based on size-based inertial focusing effects, neutrophils are isolated, concentrated, and resuspended in saline (buffer exchange) to improve consistency in impedance-based single-cell analysis. We first observed that both urine pH and the presence of bacteria can affect neutrophil high-frequency impedance measurements possibly due to changes in nucleus morphology as neutrophils undergo NETosis and phagocytosis, respectively. As a proof-of-concept for clinical testing, we report for the first time, rapid UTI testing based on multiparametric impedance profiling of putative neutrophils (electrical size, membrane properties, and distribution) in urine samples from non-UTI (n = 20) and UTI patients (n = 20). A significant increase in cell count was observed in UTI samples, and biophysical parameters were used to develop a UTI classifier with an area under the receiver operating characteristic curve of 0.84. Overall, the developed platform facilitates rapid culture-free urine screening which can be further developed to assess disease severity in UTI and other urologic diseases based on neutrophil electrical signatures.


Assuntos
Bacteriúria , Infecções Urinárias , Humanos , Impedância Elétrica , Microfluídica , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia , Infecções Urinárias/urina , Bacteriúria/diagnóstico , Bacteriúria/urina , Urinálise/métodos
20.
J Extracell Vesicles ; 12(8): e12354, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553837

RESUMO

Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes. This uptake is an active process, mediated mainly by endocytosis. Incubation of CD14+ monocytes with RBCEVs induces their differentiation into macrophages with an Mheme-like phenotype, characterized by upregulation of heme oxygenase-1 (HO-1) and the ATP-binding cassette transporter ABCG1. Moreover, macrophages that take up RBCEVs exhibit a reduction in surface CD86 and decreased secretion of TNF-α under inflammatory stimulation. The upregulation of HO-1 is attributed to heme derived from haemoglobin in RBCEVs. Heme is released from internalized RBCEVs in late endosomes and lysosomes via the heme transporter, HRG1. Consequently, RBCEVs exhibit the ability to attenuate foam cell formation from oxidized low-density lipoproteins (oxLDL)-treated macrophages in vitro and reduce atherosclerotic lesions in ApoE knockout mice on a high-fat diet. In summary, our study reveals the uptake mechanism of RBCEVs and their delivery of heme to macrophages, suggesting the potential application of RBCEVs in the treatment of atherosclerosis.


Assuntos
Aterosclerose , Vesículas Extracelulares , Animais , Camundongos , Células Espumosas/metabolismo , Células Espumosas/patologia , Heme/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Eritrócitos/metabolismo , Endocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA