Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7927): 523-528, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104559

RESUMO

Increased rates of deformation and seismicity are well-established precursors to volcanic eruptions, and their interpretation forms the basis for eruption warnings worldwide. Rates of ground displacement and the number of earthquakes escalate before many eruptions1-3, as magma forces its way towards the surface. However, the pre-eruptive patterns of deformation and seismicity vary widely. Here we show how an eruption beginning on 19 March 2021 at Fagradalsfjall, Iceland, was preceded by a period of tectonic stress release ending with a decline in deformation and seismicity over several days preceding the eruption onset. High rates of deformation and seismicity occurred from 24 February to mid-March in relation to gradual emplacement of an approximately 9-km-long magma-filled dyke, between the surface and 8 km depth (volume approximately 34 × 106 m3), as well as the triggering of strike-slip earthquakes up to magnitude MW 5.64. As stored tectonic stress was systematically released, there was less lateral migration of magma and a reduction in both the deformation rates and seismicity. Weaker crust near the surface may also have contributed to reduced seismicity, as the depth of active magma emplacement progressively shallowed. This demonstrates that the interaction between volcanoes and tectonic stress as well as crustal layering need to be fully considered when forecasting eruptions.

2.
Nature ; 517(7533): 191-5, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25517098

RESUMO

Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

3.
Nature ; 468(7322): 426-30, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21085177

RESUMO

Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.

4.
Science ; 383(6688): 1228-1235, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330140

RESUMO

Many examples of exposed giant dike swarms can be found where lateral magma flow has exceeded hundreds of kilometers. We show that massive magma flow into dikes can be established with only modest overpressure in a magma body if a large enough pathway opens at its boundary and gradual buildup of high tensile stress has occurred along the dike pathway prior to the onset of diking. This explains rapid initial magma flow rates, modeled up to about 7400 cubic meters per second into a dike ~15-kilometers long, which propagated under the town of Grindavík, Southwest Iceland, in November 2023. Such high flow rates provide insight into the formation of major dikes and imply a serious hazard potential for high-flow rate intrusions that propagate to the surface and transition into eruptions.

5.
Science ; 356(6334)2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28336563

RESUMO

On 14 November 2016, northeastern South Island of New Zealand was struck by a major moment magnitude (Mw) 7.8 earthquake. Field observations, in conjunction with interferometric synthetic aperture radar, Global Positioning System, and seismology data, reveal this to be one of the most complex earthquakes ever recorded. The rupture propagated northward for more than 170 kilometers along both mapped and unmapped faults before continuing offshore at the island's northeastern extent. Geodetic and field observations reveal surface ruptures along at least 12 major faults, including possible slip along the southern Hikurangi subduction interface; extensive uplift along much of the coastline; and widespread anelastic deformation, including the ~8-meter uplift of a fault-bounded block. This complex earthquake defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and should motivate reevaluation of these issues in seismic hazard models.

6.
Sci Adv ; 2(6): e1600288, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386580

RESUMO

Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.


Assuntos
Geografia , Fenômenos Geológicos , Modelos Teóricos , Nova Zelândia , Erupções Vulcânicas
7.
Science ; 353(6296): aaf8988, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418515

RESUMO

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption.

8.
Sci Rep ; 5: 10285, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25992847

RESUMO

Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

10.
Science ; 300(5622): 1113-8, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12750512

RESUMO

The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA