Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Small ; 20(25): e2309557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705855

RESUMO

This review focuses on the advanced design and optimization of nanostructured zinc-air batteries (ZABs), with the aim of boosting their energy storage and conversion capabilities. The findings show that ZABs favor porous nanostructures owing to their large surface area, and this enhances the battery capacity, catalytic activity, and life cycle. In addition, the nanomaterials improve the electrical conductivity, ion transport, and overall battery stability, which crucially reduces dendrite growth on the zinc anodes and improves cycle life and energy efficiency. To obtain a superior performance, the importance of controlling the operational conditions and using custom nanostructural designs, optimal electrode materials, and carefully adjusted electrolytes is highlighted. In conclusion, porous nanostructures and nanoscale materials significantly boost the energy density, longevity, and efficiency of Zn-air batteries. It is suggested that future research should focus on the fundamental design principles of these materials to further enhance the battery performance and drive sustainable energy solutions.

2.
Langmuir ; 40(19): 10240-10249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688022

RESUMO

Dried bamboo shoots (DBS) are a natural resource with inherent silica content, which can serve as sacrificial templates for the formation of mesoporous carbon but also promote the generation of silicon carbide (SiC). Building on this, we introduced mesoporous and graphitic carbon/SiC (SiC/BSC) as the CDI electrode for copper ion (Cu2+) removal. Mesoporous carbon electrodes facilitate faster ion transport, diffusion, and electron-transfer pathways. Furthermore, SiC accelerates electron transfer and promotes faradic redox reactions during the charge and discharge processes. Consequently, the synergistic effect of SiC/BSC mesoporous carbon material leads to a promising electrode for Cu2+ capacitive deionization. Leveraging these unique properties, the SiC/BSC electrode material exhibits an outstanding CDI performance of 381.5 mg/g at 1.8 V. This study offers a strategy for the preparation of efficient mesoporous carbon materials as CDI electrodes, specifically tailored for the deionization of Cu2+ ions.

3.
Angew Chem Int Ed Engl ; 63(2): e202313434, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37996973

RESUMO

The development of environmentally sustainable and highly efficient technologies for ammonia production is crucial for the future advancement of carbon-neutral energy systems. The nitrite reduction reaction (NO2 RR) for generating NH3 is a promising alternative to the low-efficiency nitrogen reduction reaction (NRR), owing to the low N=O bond energy and high solubility of nitrite. In this study, we designed a highly efficient dual-atom catalyst with Fe-Cu atomic pair sites (termed FeCu DAC), and the as-developed FeCu DAC was able to afford a remarkable NH3 yield of 24,526 µg h-1 mgcat. -1 at -0.6 V, with a Faradaic Efficiency (FE) for NH3 production of 99.88 %. The FeCu DAC also exhibited exceptional catalytic activity and selectivity in a Zn-NO2 battery, achieving a record-breaking power density of 23.6 mW cm-2 and maximum NH3 FE of 92.23 % at 20 mA cm-2 . Theoretical simulation demonstrated that the incorporation of the Cu atom changed the energy of the Fe 3d orbital and lowered the energy barrier, thereby accelerating the NO2 RR. This study not only demonstrates the potential of galvanic nitrite-based cells for expanding the field of Zn-based batteries, but also provides fundamental interpretation for the synergistic effect in highly dispersed dual-atom catalysts.

4.
Small ; 19(49): e2304854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548123

RESUMO

Simultaneously achieving high activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the key to constructing rechargeable Zn-air batteries (ZABs). Here the complexation of 1,10-phenanthroline and the spatial confinement effect of closo-[B12 H12 ]2- are used to solidify metal-boron-cluster-organic-polymers on the surface of SiO2 microspheres to construct a bifunctional oxygen electrocatalyst (FeBCN/NHCS). Driven by FeBCN/NHCS, the half-wave-potential of ORR surpasses that of the Pt/C catalyst, reaching 0.893 V versus RHE, and the overpotential (η10 ) of OER is as low as 361 mV. The ZABs of FeBCN/NHCS as an air cathode not only have high power density and specific capacity, but also have charge-discharge durability. The FeBCN/NHCS is not only related to the high specific surface area, but also the high exposure rate of single-atom Fe and the doping of heteroatom B. This study provides an efficient oxygen electrocatalyst and also contributes wisdom to the acquisition of highly active oxygen electrocatalyst.

5.
Small ; 19(16): e2207249, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36605005

RESUMO

Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.

6.
Mikrochim Acta ; 190(8): 307, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466749

RESUMO

Porous highly boron-doped BCN (p-BCN) was produced by using a boron cluster salt (closo-[B12H12]2-) as the boron-based precursor and SiO2 as a hard template. The synthesized p-BCN was used in an electrochemical sensor for the ultrasensitive and highly selective detection of morphine (MOP). The optimal conditions for MOP detection were determined by optimizing the experimental conditions. Under these optimal conditions, the p-BCN-based sensor exhibited excellent MOP detection performance (working potential of 0.2 V). Specifically, it showed a detection range of 0.05 to 200 µM and a detection limit of 17.8 nM. Notably, the p-BCN-based electrochemical sensor was successfully applied to the determination of MOP in human blood, and the results showed satisfactory recovery and accuracy. Therefore, this sensor can be used as an effective platform for the detection of MOP in human blood samples.


Assuntos
Boro , Morfina , Humanos , Porosidade , Dióxido de Silício , Eletrodos
7.
Mikrochim Acta ; 190(7): 252, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286788

RESUMO

A new strategy to prepare copper (Cu) nanoparticles anchored in nitrogen-doped carbon nanosheets (Cu@CN) has been designed and the nanomaterial applied to the determination of paraquat (PQ). The nanocomposite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and several other techniques. We found that the Cu nanoparticles are uniformly distributed on the carbon materials, providing abundant active sites for electrochemical detection. The electrochemical behavior of the Cu@CN-based PQ sensor was investigated by square-wave voltammetry (SWV). Cu@CN exhibited excellent electrochemical activity and PQ detection performance. The Cu@CN-modified glassy carbon electrode (Cu@CN/GCE) exhibited excellent stability, favorable sensitivity, and high selectivity under optimized conditions (enrichment voltage -0.1 V and enrichment time 400 s) of the SWV test. The detection range reached 0.50 nM to 12.00 µM, and the limit of detection was 0.43 nM with high sensitivity of 18 µA·µM-1·cm-2. The detection limit is 9 times better than that of the high-performance liquid chromatography method. The Cu@CN electrochemical sensor demonstrated excellent sensitivity and selectivity also in environmental water and fruit samples enabling its use in practical, rapid trace-level detection of PQ in environmental samples.

8.
Ecotoxicol Environ Saf ; 243: 113987, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994906

RESUMO

In this work, MIL-100(Fe)-decorated mesoporous carbon powders (MC@MIL-100(Fe)) were prepared by in situ growth of MIL-100(Fe) on the surface of ZIF-8 framework-based mesoporous carbons (MC). The hybrid material was characterized using SEM equipped with EDS mapping for morphology investigation, X-ray photoelectron spectroscopy for chemical valence analysis, and X-ray diffraction for crystal structure determination. The developed sensor separated from the traditional bismuth film decoration, and simultaneously, MC@MIL-100(Fe) was applied for the first time to electrochemically detect trace amounts of Pb(II) and Cd(II). The fabricated MC@MIL-100(Fe)-based electrochemical sensor showed excellent response to the target analytes at -0.55 and - 0.75 V for lead and cadmium ions, respectively. By adjusting some measurement parameters, that is, the loading concentration of MC@MIL-100(Fe), acidity of the HAc-NaAc buffer (ABS), deposition potential, and deposition time, the analytical performance of the proposed electrochemical sensor was examined by exploring the calibration curve, repeatability, reproducibility, stability, and anti-interference under optimized conditions. The response current of the proposed MC@MIL-100(Fe) electrochemical sensor showed a well-defined linear relationship in the concentration ranges of 2-250 and 2-270 µg·L-1 for Cd(II) and Pb(II), respectively. In addition, the detection limits of the sensor for Cd(II) and Pb(II) were 0.18 and 0.15 µg L-1, respectively, which are well below the World Health Organization (WHO) drinking water guideline value. The MC@MIL-100(Fe) can be potentially used as an electrochemical platform for monitoring heavy metals in surface water, with satisfactory results.


Assuntos
Cádmio , Água Potável , Cádmio/análise , Carbono/química , Água Potável/análise , Eletrodos , Íons/química , Chumbo/análise , Reprodutibilidade dos Testes
9.
Ecotoxicol Environ Saf ; 225: 112745, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481349

RESUMO

In the present work, hematite-boron-carbonitride (Fe2O3-BCN) nanosheets were synthesized by a simple hydrothermal reaction and the following high temperature treatment. The morphology, structure and chemical composition of the as-prepared material were carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Fe2O3-BCN nanosheets were used to modified on the surface of the glassy carbon electrode to fabricate an electrochemical sensor for lead ions (Pb(II)) via differential pulse anodic stripping voltammetry (DPASV). At the same time, the influence of the modification concentration, solution acidity, deposition potential and deposition time on response peak current of Pb(II) at the Fe2O3-BCN-based electrochemical sensor was well investigated. Under the optimized conditions, the electrochemical signal and concentration of Pb(II) show two-stage linear relationship in the range of 0.5 - 40 µg/L and 40 -140 µg/L, with a limit of detection (LOD) of 0.129 µg/L. The Fe2O3-BCN-based electrochemical sensor shows excellent selectivity and anti-interference ability in the anti-interference experiments and actual sample analysis experiments, revealing its broad application in environmental monitoring of Pb(II).


Assuntos
Nanopartículas , Água , Compostos Férricos , Íons , Chumbo
10.
Small ; 16(48): e2004855, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33169523

RESUMO

N-coordinated transition-metal materials are crucial alternatives to design cost-effective, efficient, and highly durable catalysts for electrocatalytic oxygen reduction reaction. Herein, the synthesis of uniformly distributed Cu-Zn clusters on porous N-doped carbon, which are accompanied by Cu/Zn-Nx single sites, is demonstrated. X-ray absorption fine structure tests reveal the co-existence of M-N (M = Cu or Zn) and M-M bonds in the catalyst. The catalyst shows excellent oxygen reduction reaction (ORR) performance in an alkaline medium with a positive half-wave potential of 0.884 V, a superior kinetic current density of 36.42 mA cm-2 at 0.85 V, and a Tafel slope of 45 mV dec-1 , all of which are among the best-reported results. Furthermore, when employed as an air cathode in Zn-Air battery, it reveals a high open-cycle potential of 1.444 V and a peak power density of 164.3 mW cm-2 . Comprehensive experiments and theoretical calculations approved that the high activity of the catalyst can be attributed to the collaboration of the Cu/Zn-N4 sites with CuZn moieties on N-doped carbons.

11.
Ecotoxicol Environ Saf ; 204: 111066, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781344

RESUMO

In this study, an iron-doped metal-organic framework (MOF) Fe/ZIF-8 was synthesized from ZIF-8 at room temperature. Direct carbonization of Fe/ZIF-8 under a nitrogen atmosphere produced nanoporous nitrogen doped carbon nanoparticles decorated with Fe component (Fe/NC). The Fe/NC exhibited a large surface area (1221.185 m2 g-1) and narrow pore-size distribution (3-5 nm). The nanoporous Fe/NC components along with Nafion were used to modify a glassy carbon electrode for the electrochemical determination of chloramphenicol and metronidazole via linear sweep voltammetry. Under optimal conditions, the reduction peak currents (observed at -0.237 V and -0.071 V vs. Ag/AgCl) of these analytes increased linearly with increasing chloramphenicol and metronidazole concentrations in the range of 0.1-100 µM and 0.5-30 µM, with the detection limits estimated to be 31 nM and 165 nM, respectively. This result was attributed to the large surface area, porous structure, high nitrogen content, and as well as the electrocatalytic effect of Fe atoms embeded in the carbon support. The proposed sensor was used for chloramphenicol and metronidazole analysis in samples, providing satisfactory results.


Assuntos
Carbono/química , Cloranfenicol/análise , Técnicas Eletroquímicas/métodos , Ferro/química , Estruturas Metalorgânicas/química , Metronidazol/análise , Nitrogênio/química , Animais , Cloranfenicol/urina , Eletrodos , Humanos , Limite de Detecção , Metronidazol/urina , Leite/química , Nanoporos , Soluções Oftálmicas/química , Porosidade , Comprimidos/química
12.
Angew Chem Int Ed Engl ; 59(7): 2688-2694, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31769154

RESUMO

The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM-free) catalysts seriously restrict the application of proton-exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe-doped ZIF-8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4 ; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe-doped ZIF-8 single crystals, which were subsequently carbonized to obtain an FeN4 -doped hierarchical ordered porous carbon (FeN4 /HOPC) skeleton. The optimal catalyst FeN4 /HOPC-c-1000 shows excellent performance with a half-wave potential of 0.80 V in 0.5 m H2 SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4 /HOPC-c-1000 exhibits significantly enhanced current density and power density relative to FeN4 /C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR).

13.
J Am Chem Soc ; 141(1): 232-239, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540181

RESUMO

The oxygen evolution reaction is a crucial step in water electrolysis to develop clean and renewable energy. Although noble metal-based catalysts have demonstrated high activity for the oxygen evolution reaction, their application is limited by their high cost and low availability. Here we report the use of a molecule-to-cluster strategy for preparing ultrasmall trimetallic clusters by using the polyoxometalate molecule as a precursor. Ultrafine (0.8 nm) transition-metal clusters with controllable chemical composition are obtained. The transition-metal clusters enable highly efficient oxygen evolution through water electrolysis in alkaline media, manifested by an overpotential of 192 mV at 10 mA cm-2, a low Tafel slope of 36 mV dec-1, and long-term stability for 30 h of electrolysis. We note, however, that besides the excellent performance as an oxygen evolution catalyst, our molecule-to-cluster strategy provides a means to achieve well-defined transition-metal clusters in the subnanometer regime, which potentially can have an impact on several other applications.

14.
Mikrochim Acta ; 186(6): 379, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134397

RESUMO

The authors describe a method for synthesis of a nanomaterial consisting of porous carbon encapsulated Mg-Al-Si alloy (denoted as Mg-Al-Si@PC) nanocluster. The nanocluster was synthesis by a solvothermal reaction, followed by high-temperature annealing. The nanoclusters were used as a novel immobilization platform for electrochemical sensing of rutin. The electrochemical behavior of rutin at a modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry. The modified electrode demonstrates a high electrocatalytic activity toward rutin oxidation at a relatively low working potential (0.6 vs. Ag/AgCl). Under optimal conditions, the sensor has a linear response in the 1-10 µM rutin concentration range, and a 0.01 µM lower detection limit (at an S/N ratio of 3). It was successfully applied to the quantification of rutin in pharmaceutical tablets, and satisfactory results were obtained. Furthermore, the results correspond with those with the standard method and with the amounts indicated by the producer, respectively. Graphical abstract Schematic diagram of the Mg-Al-Si@PC nanocluster preparation process and electroanalysis mechanism.

15.
Mikrochim Acta ; 185(6): 282, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29730768

RESUMO

Porous carbon nanofibers codoped with nitrogen and sulfur (NFs) were prepared by pyrolysis of trithiocyanuric acid, silica nanospheres and polyacrylonitrile (PAN) followed by electrospinning. The NFs were used to modify a glassy carbon electrode (GCE) which then displayed highly sensitive response to traces of Cd(II). Compared to a bare GCE and a Nafion modified GCE, the GCE modified with codoped NFs shows improved sensitivity for Cd(II) in differential pulse anodic sweep voltammetry. The stripping peak current (typically measured at 0.81 V vs. Ag/AgCl) increases linearly in the 2.0-500 µg·L-1 Cd(II) concentration range. This is attributed to the large surface area (109 m2·g-1), porous structure, and high fraction of heteroatoms (19 at.% of N and 0.75 at.% of S). The method was applied to the determination of Cd(II) in (spiked) tap water where it gave recoveries that ranged between 96% and 103%. Graphical abstract Schematic of a glassy carbon electrode (GCE) modified with N- and S-codoped porous carbon nanofibers (N,S-PCNFs). This GCE has good selectivity for cadmium ion (Cd2+) which can be determined by differential pulse anodic sweeping voltammetry (DPASV) with a detection limit as low as 0.7 ng·mL-1.

16.
Sensors (Basel) ; 18(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762494

RESUMO

A simple and easy method was implemented for the contemporary detection of cadmium (Cd2+) and lead (Pb2+) ions using 1,3,6,8-pyrenetetrasulfonic acid sodium salt-functionalized carbon nanotubes nanocomposites (PyTS⁻CNTs). The morphology and composition of the obtained PyTS⁻CNTs were characterized using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). The experimental results confirmed that the fabricated PyTS⁻CNTs exhibited good selectivity and sensitivity for metal ion-sensing owing to the insertion of sulfonic acid groups. For Cd2+ and Pb2+, some of the electrochemical sensing parameters were evaluated by varying data such as the PyTS⁻CNT quantity loaded on the pyrolytic graphite electrode (PGE), pH of the acetate buffer, deposition time, and deposition potential. These parameters were optimized with differential pulse anodic sweeping voltammetry (DPASV). Under the optimal condition, the stripping peak current of the PyTS⁻CNTs/Nafion/PGE varies linearly with the heavy metal ion concentration, ranging from 1.0 µg L-1 to 90 µg L-1 for Cd2+ and from 1.0 µg L-1 to 110 µg L-1 for Pb2+. The limits of detection were estimated to be approximately 0.8 µg L-1 for Cd2+ and 0.02 µg L-1 for Pb2+. The proposed PyTS⁻CNTs/Nafion/PGE can be used as a rapid, simple, and controllable electrochemical sensor for the determination of toxic Cd2+ and Pb2+.

17.
Nano Lett ; 17(3): 2003-2009, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28128964

RESUMO

Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe3O4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

18.
Angew Chem Int Ed Engl ; 56(44): 13800-13804, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28857381

RESUMO

Various advanced catalysts based on sulfur-doped Fe/N/C materials have recently been designed for the oxygen reduction reaction (ORR); however, the enhanced activity is still controversial and usually attributed to differences in the surface area, improved conductivity, or uncertain synergistic effects. Herein, a sulfur-doped Fe/N/C catalyst (denoted as Fe/SNC) was obtained by a template-sacrificing method. The incorporated sulfur gives a thiophene-like structure (C-S-C), reduces the electron localization around the Fe centers, improves the interaction with oxygenated species, and therefore facilitates the complete 4 e- ORR in acidic solution. Owing to these synergistic effects, the Fe/SNC catalyst exhibits much better ORR activity than the sulfur-free variant (Fe/NC) in 0.5 m H2 SO4 .

19.
Analyst ; 141(19): 5555-62, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27419247

RESUMO

Nitrogen (N) and sulfur (S) co-doped activated graphene (N,S-AGR) was prepared by the one-pot pyrolysis of a mixture of graphene oxide (GO), thiourea, and potassium hydroxide (KOH), where thiourea acts as the source of N and S dopants and KOH is the activator for porosity. N,S-AGR with a dopant abundance of 2.8 at% N and 2.3 at% S was then used as a high-activity electrocatalyst in the fabrication of an electrochemical sensor for simultaneous determination of dihydroxybenzene isomers, hydroquinone (HQ) and catechol (CC), in aqueous solution. Compared with the bare glassy carbon electrode (GCE), the electrodes modified with N,S-AGR showed enhanced electrochemical performance toward HQ and CC in both cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements because of their enlarged surface area, enhanced electron-transfer rate and increased active sites. Compared with some recently reported electrochemical sensors based on graphene composites, the N,S-AGR modified electrode exhibits higher sensitivity, a much lower detection limit and a comparable linear range for the simultaneous determination of HQ and CC. Moreover, the proposed sensor is promising in practical application for the satisfactory recoveries obtained in real water sample analyses.

20.
J Am Chem Soc ; 136(18): 6626-33, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24758410

RESUMO

Studies on noble-metal-decorated carbon nanostructures are reported almost on a daily basis, but detailed studies on the nanoscale interactions for well-defined systems are very rare. Here we report a study of reduced graphene oxide (rGOx) homogeneously decorated with palladium (Pd) nanoclusters with well-defined shape and size (2.3 ± 0.3 nm). The rGOx was modified with benzyl mercaptan (BnSH) to improve the interaction with Pd clusters, and N,N-dimethylformamide was used as solvent and capping agent during the decoration process. The resulting Pd nanoparticles anchored to the rGOx-surface exhibit high crystallinity and are fully consistent with six-shell cuboctahedral and icosahedral clusters containing ~600 Pd atoms, where 45% of these are located at the surface. According to X-ray photoelectron spectroscopy analysis, the Pd clusters exhibit an oxidized surface forming a PdO(x) shell. Given the well-defined experimental system, as verified by electron microscopy data and theoretical simulations, we performed ab initio simulations using 10 functionalized graphenes (with vacancies or pyridine, amine, hydroxyl, carboxyl, or epoxy groups) to understand the adsorption process of BnSH, their further role in the Pd cluster formation, and the electronic properties of the graphene-nanoparticle hybrid system. Both the experimental and theoretical results suggest that Pd clusters interact with functionalized graphene by a sulfur bridge while the remaining Pd surface is oxidized. Our study is of significant importance for all work related to anchoring of nanoparticles on nanocarbon-based supports, which are used in a variety of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA