Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Am Chem Soc ; 145(10): 5786-5794, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36862809

RESUMO

The integration of heterogeneous electrocatalysis and molecular catalysis is a promising approach to designing new catalysts for the oxygen evolution reaction (OER) and other processes. We recently showed that the electrostatic potential drop across the double layer contributes to the driving force for electron transfer between a dissolved reactant and a molecular catalyst immobilized directly on the electrode surface. Here, we report high current densities and low onset potentials for water oxidation attained using a metal-free voltage-assisted molecular catalyst (TEMPO). Scanning electrochemical microscopy (SECM) was used to analyze the products and determine faradic efficiencies for the generation of H2O2 and O2. The same catalyst was employed for efficient oxidations of butanol, ethanol, glycerol, and H2O2. DFT calculations show that the applied voltage alters the electrostatic potential drop between TEMPO and the reactant as well as chemical bonding between them, thereby increasing the reaction rate. These results suggest a new route for designing next-generation hybrid molecular/electrocatalysts for OER and alcohol oxidations.

2.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37929866

RESUMO

Polar surfaces undergo polarity compensation, which can lead to significantly different surface chemistry from their nonpolar counterparts. This process in turn can substantially alter the binding of adsorbates on the surface. Here, we find that hydrogen binds much more strongly to the polar (110) surface than the nonpolar (100) surface for a wide range of ABO3 perovskites, forming a hydroxyl layer on the O24- termination and a hydride layer on the ABO4+ termination of the (110) surface. The stronger adsorption on the polar surfaces can be explained by polarity compensation: hydrogen atoms can act as electron donors or acceptors to compensate for the polarity of perovskite surfaces. The relative stability of the surface terminations is further compared under different gas environments and several perovskites have been found to form stable surface hydride layers under oxygen-poor conditions. These results demonstrate the feasibility of creating stable surface hydrides on perovskites by polarity compensation which might lead to new hydrogenation catalysts based on ABO3 perovskites.

3.
Phys Rev Lett ; 129(23): 235701, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563221

RESUMO

Understanding the behavior of defects in the complex oxides is key to controlling myriad ionic and electronic properties in these multifunctional materials. The observation of defect dynamics, however, requires a unique probe-one sensitive to the configuration of defects as well as its time evolution. Here, we present measurements of oxygen vacancy ordering in epitaxial thin films of SrCoO_{x} and the brownmillerite-perovskite phase transition employing x-ray photon correlation spectroscopy. These and associated synchrotron measurements and theory calculations reveal the close interaction between the kinetics and the dynamics of the phase transition, showing how spatial and temporal fluctuations of heterointerface evolve during the transformation process. The energetics of the transition are correlated with the behavior of oxygen vacancies, and the dimensionality of the transformation is shown to depend strongly on whether the phase is undergoing oxidation or reduction. The experimental and theoretical methods described here are broadly applicable to in situ measurements of dynamic phase behavior and demonstrate how coherence may be employed for novel studies of the complex oxides as enabled by the arrival of fourth-generation hard x-ray coherent light sources.

4.
J Chem Phys ; 156(1): 014707, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998345

RESUMO

The first magnetic 2D material discovered, monolayer (ML) CrI3, is particularly fascinating due to its ground state ferromagnetism. However, because ML materials are difficult to probe experimentally, much remains unresolved about ML CrI3's structural, electronic, and magnetic properties. Here, we leverage Density Functional Theory (DFT) and high-accuracy Diffusion Monte Carlo (DMC) simulations to predict lattice parameters, magnetic moments, and spin-phonon and spin-lattice coupling of ML CrI3. We exploit a recently developed surrogate Hessian DMC line search technique to determine CrI3's ML geometry with DMC accuracy, yielding lattice parameters in good agreement with recently published STM measurements-an accomplishment given the ∼10% variability in previous DFT-derived estimates depending upon the functional. Strikingly, we find that previous DFT predictions of ML CrI3's magnetic spin moments are correct on average across a unit cell but miss critical local spatial fluctuations in the spin density revealed by more accurate DMC. DMC predicts that magnetic moments in ML CrI3 are 3.62 µB per chromium and -0.145 µB per iodine, both larger than previous DFT predictions. The large disparate moments together with the large spin-orbit coupling of CrI3's I-p orbital suggest a ligand superexchange-dominated magnetic anisotropy in ML CrI3, corroborating recent observations of magnons in its 2D limit. We also find that ML CrI3 exhibits a substantial spin-phonon coupling of ∼3.32 cm-1. Our work, thus, establishes many of ML CrI3's key properties, while also continuing to demonstrate the pivotal role that DMC can assume in the study of magnetic and other 2D materials.

5.
J Am Chem Soc ; 143(42): 17344-17347, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644499

RESUMO

Heterogeneous electrocatalysis and molecular redox catalysis have developed over several decades as two distinct ways to facilitate charge-transfer processes essential for energy conversion and storage. Whereas electrocatalytic reactions are driven by the applied voltage, molecular catalytic processes are driven by the difference between standard potentials of the catalyst and the reactant. Here, we demonstrate that the rate of electron transfer between a dissolved reactant and a molecular catalyst immobilized directly on the surface of a carbon nanoelectrode is governed by combination of chemical driving force and electrostatic potential drop across the double layer. DFT calculations show that varying the applied voltage alters the potential drop between the surface-bound and dissolved redox species. These results suggest a new route for designing next-generation hybrid molecular/electrocatalysts.

6.
Nano Lett ; 20(8): 6051-6058, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32687372

RESUMO

Solar-driven interfacial steam generation is a promising technique for clean water production because it can minimize thermal loss by localizing solar-to-heat conversion at the air/liquid interface. Here we report an integrated solar evaporator by partially growing 2D polypyrrole microsheets within a melamine foam through chemical vapor polymerization. These microsheets can induce multiple light reflections within the foam, enable omnidirectional light absorption, provide abundant surfaces to promote heat transfer, and achieve spatially defined hydrophobicity to facilitate vapor escape. Meanwhile, the inherent hydrophilicity of the bottom part of the foam promotes spontaneous upward water transport and suppresses heat loss. The composite foam exhibits an excellent apparent evaporation rate of ∼2 kg/(m2·h) and solar-to-vapor efficiency of ∼91%. The combined advantages of large surface area, high efficiency, low cost, all-weather application, excellent durability, and scalable manufacturing make our integrated design promising for fabricating large-scale solar steam generation systems that are suitable for practical clean water production.

7.
Acc Chem Res ; 51(11): 2793-2802, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30398051

RESUMO

Atomically precise, ligand-protected metal nanoclusters are of great interest for their well-defined structures, intriguing physicochemical properties, and potential applications in catalysis, biology, and nanotechnology. Their structure precision provides many opportunities to correlate their geometries, stability, electronic properties, and catalytic activities by closely integrating theory and experiment. In this Account, we highlight recent theoretical advances from our efforts to understand the metal-ligand interfaces, the energy landscape, the electronic structure and optical absorption, and the catalytic applications of atomically precise metal nanoclusters. We mainly focus on gold nanoclusters. The bonding motifs and energetics at the gold-ligand interfaces are two main interests from a computational perspective. For the gold-thiolate interface, the -RS-Au-SR- staple motif is not always preferred; in fact, the bridging motif (-SR-) is preferred at the more open facets such as Au(100) and Au(110). This finding helps understand the diversity of the gold-thiolate motifs for different core geometries and sizes. A great similarity is demonstrated between gold-thiolate and gold-alkynyl interfaces, regarding formation of the staple-type motifs with PhC≡C- as an example. In addition, N-heterocyclic carbenes (NHCs) without bulky groups also form the staple-type motif. Alkynyls and bulky NHCs have the strongest binding with the gold surface from comparing 27 ligands of six types, suggesting a potential to synthesize NHC-protected gold clusters. The energy landscape of nanosystems is usually complex, but experimental progress in synthesizing clusters of the same Au-S composition with different R groups and isomers of the same Au n(SR) m formula have made detailed theoretical analyses of energetic contributions possible. Ligand-ligand interactions turn out to play an important role in the cluster stability, while metastable isomers can be obtained via kinetic control. Although the superatom-complex theory is the starting point to understand the electronic structure of atomically precise gold clusters, other factors also greatly affect the orbital levels that manifest themselves in the experimental optical absorption spectra. For example, spin-orbit coupling needs to be included to reproduce the splitting of the HOMO-LUMO transition observed experimentally for Au25(SR)18-, the poster child of the family. In addition, doping can lead to structural changes and charge states that do not follow the superatomic electron count. Atomically precise metal nanoclusters are an ideal system for understanding nanocatalysis due to their well-defined structures. Active sites and catalytic mechanisms are explored for selective hydrogenation and hydrogen evolution on thiolate-protected gold nanoclusters with and without dopants. The behavior of H in nanogold is analyzed in detail, and the most promising site to attract H is found to be coordinately unsaturated Au atoms. Many insights have been gained from first-principles studies of atomically precise, ligand-protected gold nanoclusters. Interesting and important questions remaining to be addressed are pointed out in the end.

8.
Chemphyschem ; 20(17): 2217-2220, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31313443

RESUMO

Methane chemisorption has been recently demonstrated on the rutile IrO2 (110) surface. However, it remains unclear how the general requirements are for methane chemisorption or complexation with a single atom on an oxide surface. By exploring methane adsorption on Pt1 substitutionally doped on many rutile-type oxides using hybrid density functional theory, we show that the occupancy of the Pt dz2 orbital is the key to methane chemisorption. Pt single atom on the semiconducting or wide-gap oxides such as TiO2 and GeO2 strongly chemisorbs methane, because the empty Pt dz2 orbital is located in the gap and can effectively accept σ-electron donation from the methane C-H bond. In contrast, Pt single atom on metallic oxides such as IrO2 and RuO2 does not chemisorb methane, because the Pt dz2 orbital strongly mixes with the support-oxide electronic states and become more occupied, losing its ability to chemisorb methane. This study sheds further light on the impact of the interaction between a Pt single atom and the oxide support on methane adsorption.

9.
J Phys Chem A ; 122(11): 2956-2973, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29489363

RESUMO

The structural and optical properties of hydroxyphenyl-substituted-1,2,3-triazole molecules ("click" triazoles) are described. "Click" triazoles are prepared from the copper(I)-catalyzed azide-alkyne cycloaddition reactions. The alkyne-derived C4 substituent of a "click" triazole engages in electronic conjugation more effectively with the triazolyl core than the azide-derived N1 substituent. Furthermore, triazolyl group exerts a stronger electron-withdrawing effect on the N1 than the C4 substituent. Therefore, the placement of an electron-donating group at either C4 or N1 position and the presence or the absence of an intramolecular hydrogen bond (HB) have profound influences on the optical properties of these compounds. The reported "click" triazoles have fluorescence quantum yields in the range of 0.1-0.3 and large apparent Stokes shifts (8000-13 000 cm-1) in all tested solvents. Deprotonation of "click" triazoles with a C4 hydroxyphenyl group increases their Stokes shifts; while the opposite (or quenching) occurs to the triazoles with an N1 hydroxyphenyl substituent. For the triazoles that contain intramolecular HBs, neither experimental nor computational results support a model of excited state intramolecular proton transfer (ESIPT). Rather, the excited state internal (or intramolecular) charge transfer (ICT) mechanism is more suitable to explain the fluorescence properties of the hydroxyphenyl-substituted "click" triazoles; specifically, the large Stokes shifts of these compounds.

10.
J Am Chem Soc ; 139(28): 9451-9454, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28665597

RESUMO

Bimetallic nanoclusters Au19Cu30 with chemical composition of [Au19Cu30(C≡CR)22(Ph3P)6Cl2](NO3)3 (where RC≡C is from 3-ethynylthiophene (H3C4S-3-C≡CH) or ethynylbenzene (PhC≡CH)) has been synthesized. Single X-ray structural analysis reveals that Au19Cu30 has a multishelled core structure of Au@Au12@Cu30@Au6, comprising a centered icosahedral Au13 (Au@Au12) surrounded by an icosidodecahedral Cu30 shell and an outmost shell of a chairlike hexagonal Au6. The alkynyl carbon is bound to the hollow sites on the Au19Cu30 nanocluster surface, which is a novel interfacial binding mode in alkynyl-protected alloy nanoclusters. The Cu30 icosidodecahedron is unprecedented and Au19Cu30 represents the first alkynyl-protected Au-Cu alloy nanocluster.

11.
J Am Chem Soc ; 139(35): 12283-12290, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28797164

RESUMO

The development of low-cost hybrid water splitting-biosynthetic systems that mimic natural photosynthesis to achieve solar-to-chemical conversion is of great promise for future energy demands, but often limited by the kinetically sluggish hydrogen evolution reaction (HER) on the surface of nonprecious transition metal catalysts in neutral media. It is thus highly desirable to rationally tailor the reaction interface to boost the neutral HER catalytic kinetics. Herein, we report a general surface nitrogen modification of diverse transition metals (e.g., iron, cobalt, nickel, copper, and nickel-cobalt alloy), accomplished by a facile low-temperature ammonium carbonate treatment, for significantly improved hydrogen generation from neutral water. Various physicochemical characterization techniques including synchrotron X-ray absorption spectroscopy (XAS) and theory modeling demonstrate that the surface nitrogen modification does not change the chemical composition of the underlying transition metals. Notably, the resulting nitrogen-modified nickel framework (N-Ni) exhibits an extremely low overpotential of 64 mV at 10 mA cm-2, which is, to our knowledge, the best among those nonprecious electrocatalysts reported for hydrogen evolution at pH 7. Our combined experimental results and density functional theory (DFT) calculations reveal that the surface electron-rich nitrogen simultaneously facilitates the initial adsorption of water via the electron-deficient H atom and the subsequent dissociation of the electron-rich HO-H bond via H transfer to N on the nickel surface, beneficial to the overall hydrogen evolution process.


Assuntos
Elementos de Transição/química , Catálise , Eletroquímica , Hidrogênio/química , Microscopia Eletrônica de Transmissão , Propriedades de Superfície , Água/química , Espectroscopia por Absorção de Raios X
12.
Nano Lett ; 16(10): 6560-6567, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27685318

RESUMO

Investigation of atomically precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects on Au catalysis. Herein, we explored the catalytic behavior of a newly synthesized Au22(L8)6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO2, CeO2, and Al2O3. Stability of the supported Au22 nanoclusters was probed structurally by in situ extended X-ray absorption fine structure (EXAFS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and their ability to adsorb and oxidize CO was investigated by IR absorption spectroscopy and a temperature-programmed flow reaction. Low-temperature CO oxidation activity was observed for the supported pristine Au22(L8)6 nanoclusters without ligand removal. Density functional theory (DFT) calculations confirmed that the eight uncoordinated Au sites in the intact Au22(L8)6 nanoclusters can chemisorb both CO and O2. Use of isotopically labeled O2 demonstrated that the reaction pathway occurs mainly through a redox mechanism, consistent with the observed support-dependent activity trend of CeO2 > TiO2 > Al2O3. We conclude that the uncoordinated Au sites in the intact Au22(L8)6 nanoclusters are capable of adsorbing CO, activating O2, and catalyzing CO oxidation reaction. This work is the first clear demonstration of a ligand-protected intact Au nanocluster that is active for gas-phase catalysis without the need of ligand removal.

13.
Phys Chem Chem Phys ; 18(34): 23864-71, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27524281

RESUMO

Cobalt phosphide (CoP) is one of the most promising, earth-abundant electrocatalysts discovered to date for hydrogen evolution reaction (HER), yet the mechanism is not well understood. Since hydrogen adsorption is a key factor of HER activity, here we examine the adsorption of atomic hydrogen on the low-Miller-index surfaces of CoP, including (111), (110), (100), and (011), by using periodic density functional theory. From the calculated Gibbs free energy of adsorption, we predict that (111), (110), and (011) surfaces will have good catalytic activities for HER. From ab initio atomistic thermodynamics, we find that the stabilities of the surfaces at 1 atm H2 and 300 K follow the trend of (111) > (100) ∼ (110) ≫ (011). On the most stable (111) surface, both Co bridge sites and P top sites are found to be able to adsorb hydrogen with a close-to-zero free energy change and the synergy of proximal Co and P atoms on the surface results in a better HER activity. Our work provides important insights into CoP's excellent HER activity and a basis for further mechanistic understanding of HER on CoP and other transition-metal phosphides.

14.
ACS Nano ; 18(21): 13866-13875, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38751199

RESUMO

Control over material structure and morphology during electrodeposition is necessary for material synthesis and energy applications. One approach to guide crystallite formation is to take advantage of epitaxy on a current collector to facilitate crystallographic control. Single-layer graphene on metal foils can promote "remote epitaxy" during Cu and Zn electrodeposition, resulting in growth of metal that is crystallographically aligned to the substrate beneath graphene. However, the substrate-graphene-deposit interactions that allow for epitaxial electrodeposition are not well understood. Here, we investigate how different graphene layer thicknesses (monolayer, bilayer, trilayer, and graphite) influence the electrodeposition of Zn and Cu. Scanning transmission electron microscopy and electron backscatter diffraction are leveraged to understand metal morphology and structure, demonstrating that remote epitaxy occurs on mono- and bilayer graphene but not trilayer or thicker. Density functional theory (DFT) simulations reveal the spatial electronic interactions through thin graphene that promote remote epitaxy. This work advances our understanding of electrochemical remote epitaxy and provides strategies for improving control over electrodeposition.

15.
Front Radiol ; 3: 1115527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601532

RESUMO

Background: Cardiac infiltration is the major predictor of poor prognosis in patients with systemic amyloidosis, thus it becomes of great importance to evaluate cardiac involvement. Purpose: We aimed to evaluate left ventricular myocardial deformation alteration in patients with cardiac amyloidosis (CA) using layer-specific tissue tracking MR. Material and Methods: Thirty-nine patients with CA were enrolled. Thirty-nine normal controls were also recruited. Layer-specific tissue tracking analysis was done based on cine MR images. Results: Compared with the control group, a significant reduction in LV whole layer strain values (GLS, GCS, and GRS) and layer-specific strain values was found in patients with CA (all P < 0.01). In addition, GRS and GLS, as well as subendocardial and subepicardial GLS, GRS, and GCS, were all diminished in patients with CA and reduced LVEF, when compared to those with preserved or mid-range LVEF (all P < 0.05). GCS showed the largest AUC (0.9952, P = 0.0001) with a sensitivity of 93.1% and specificity of 90% to predict reduced LVEF (<40%). Moreover, GCS was the only independent predictor of LV systolic dysfunction (Odds Ratio: 3.30, 95% CI:1.341-8.12, and P = 0.009). Conclusion: Layer-specific tissue tracking MR could be a useful method to assess left ventricular myocardial deformation in patients with CA.

16.
ACS Appl Mater Interfaces ; 15(9): 11703-11712, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812428

RESUMO

Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 µg h-1 mgcat.-1 (corresponding to 10.5 µg h-1 cm-2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.

17.
Adv Mater ; 35(14): e2210116, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36635517

RESUMO

The ability to deterministically fabricate nanoscale architectures with atomic precision is the central goal of nanotechnology, whereby highly localized changes in the atomic structure can be exploited to control device properties at their fundamental physical limit. Here, an automated, feedback-controlled atomic fabrication method is reported and the formation of 1D-2D heterostructures in MoS2 is demonstrated through selective transformations along specific crystallographic orientations. The atomic-scale probe of an aberration-corrected scanning transmission electron microscope (STEM) is used, and the shape and symmetry of the scan pathway relative to the sample orientation are controlled. The focused and shaped electron beam is used to reliably create Mo6 S6 nanowire (MoS-NW) terminated metallic-semiconductor 1D-2D edge structures within a pristine MoS2 monolayer with atomic precision. From these results, it is found that a triangular beam path aligned along the zig-zag sulfur terminated (ZZS) direction forms stable MoS-NW edge structures with the highest degree of fidelity without resulting in disordering of the surrounding MoS2 monolayer. Density functional theory (DFT) calculations and ab initio molecular dynamic simulations (AIMD) are used to calculate the energetic barriers for the most stable atomic edge structures and atomic transformation pathways. These discoveries provide an automated method to improve understanding of atomic-scale transformations while opening a pathway toward more precise atomic-scale engineering of materials.

18.
Adv Mater ; 35(42): e2305383, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37578079

RESUMO

The heterogeneous nature, local presence, and dynamic evolution of defects typically govern the ionic and electronic properties of a wide variety of functional materials. While the last 50 years have seen considerable efforts into development of new methods to identify the nature of defects in complex materials, such as the perovskite oxides, very little is known about defect dynamics and their influence on the functionality of a material. Here, the discovery of the intermittent behavior of point defects (oxygen vacancies) in oxide heterostructures employing X-ray photon correlation spectroscopy is reported. Local fluctuations between two ordered phases in strained SrCoOx with different degrees of stability of the oxygen vacancies are observed. Ab-initio-informed phase-field modeling reveals that fluctuations between the competing ordered phases are modulated by the oxygen ion/vacancy interaction energy and epitaxial strain. The results demonstrate how defect dynamics, evidenced by measurement and modeling of their temporal fluctuations, give rise to stochastic properties that now can be fully characterized using coherent X-rays, coupled for the first time to multiscale modeling in functional complex oxide heterostructures. The study and its findings open new avenues for engineering the dynamical response of functional materials used in neuromorphic and electrochemical applications.

19.
ACS Appl Mater Interfaces ; 14(8): 10898-10906, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35170955

RESUMO

We report on the mechanism for hydrogen-induced topotactic phase transitions in perovskite (PV) oxides using La0.7Sr0.3MnO3 as a prototypical example. Hydrogenation starts with lattice expansion confirmed by X-ray diffraction (XRD). The strain- and oxygen-vacancy-mediated electron-phonon coupling in turn produces electronic structure changes that manifest through the appearance of a metal insulator transition accompanied by a sharp increase in resistivity. The ordering of initially randomly distributed oxygen vacancies produces a PV to brownmillerite phase (La0.7Sr0.3MnO2.5) transition. This phase transformation proceeds by the intercalation of oxygen vacancy planes confirmed by in situ XRD and neutron reflectometry (NR) measurements. Despite the prevailing picture that hydrogenation occurs by reaction with lattice oxygen, NR results are not consistent with deuterium (hydrogen) presence in the La0.7Sr0.3MnO3 lattice at steady state. The film can reach a highly oxygen-deficient La0.7Sr0.3MnO2.1 metastable state that is reversible to the as-grown composition simply by annealing in air. Theoretical calculations confirm that hydrogenation-induced oxygen vacancy formation is energetically favorable in La0.7Sr0.3MnO3. The hydrogenation-driven changes of the oxygen sublattice periodicity and the electrical and magnetic properties similar to interface effects induced by oxygen-deficient cap layers persist despite hydrogen not being present in the lattice.

20.
J Phys Chem Lett ; 12(9): 2320-2326, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651627

RESUMO

2D materials have attracted tremendous interest as functional materials because of their diverse and tunable properties, especially at their edges. A material's work function is a critical parameter in many electronic devices; however, a fundamental understanding and a path toward large alterations of the work function in 2D materials still remain elusive. Here, we report the first evidence for anisotropy of the work function in 2D MoS2 from first-principles calculations. We also demonstrate large work-function tunability (in the range of 3.45-6.29 eV) choosing the 2H phase of MoS2 as a model system by sampling various edge configurations. We furthermore reveal the origin of this work function anisotropy and tunability by extending the existing work function relation to the local dipole moment at surfaces of 3D materials to those at edges in 2D materials. We then use machine-learning approaches to correlate work function with edge structures. These results pave the way for intrinsic edge engineering for electronic and catalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA