Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(16): 6337-6346, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613479

RESUMO

The arsM gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of arsM is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (µPAD) was constructed for the high-throughput POU analysis of arsM, with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes. First, seven crRNAs were designed to recognize arsM, and their LODs and background signal intensities were evaluated. Next, a step-by-step iterative approach was utilized to develop and optimize coupling systems, which improved the sensitivity 32 times and eliminated background signal interference. Then, ssDNA reporters modified with HRP were introduced to further lower the LOD to 16 fM, and the assay results were visible to the naked eye. A multiplex channel microfluidic paper-based chip was developed for the reaction integration and simultaneous detection of 32 samples and generated a recovery rate between 87.70 and 114.05%, simplifying the pretreatment procedures and achieving high-throughput POU analysis. Finally, arsM in Wanshan paddy soil was screened on site, and the arsM abundance ranged from 1.05 × 106 to 6.49 × 107 copies/g; this result was not affected by the environmental indicators detected in the study. Thus, a coupling crRNA-based cascade amplification method for analyzing arsM was constructed, and a microfluidic device was developed that contains many more channels than previous paper chips, greatly improving the analytical performance in paddy soil samples and providing a promising tool for the on-site screening of arsM at large scales.


Assuntos
Solo , Solo/química , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Sistemas CRISPR-Cas , Oryza/química , Poluentes do Solo/análise , Dispositivos Lab-On-A-Chip , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos
2.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894438

RESUMO

Accurate identification of Seriola dumerili (SD) offers crucial technical support for aquaculture practices and behavioral research of this species. However, the task of discerning S. dumerili from complex underwater settings, fluctuating light conditions, and schools of fish presents a challenge. This paper proposes an intelligent recognition model based on the YOLOv8 network called SD-YOLOv8. By adding a small object detection layer and head, our model has a positive impact on the recognition capabilities for both close and distant instances of S. dumerili, significantly improving them. We construct a convenient S. dumerili dataset and introduce the deformable convolution network v2 (DCNv2) to enhance the information extraction process. Additionally, we employ the bottleneck attention module (BAM) and redesign the spatial pyramid pooling fusion (SPPF) for multidimensional feature extraction and fusion. The Inner-MPDIoU bounding box regression function adjusts the scale factor and evaluates geometric ratios to improve box positioning accuracy. The experimental results show that our SD-YOLOv8 model achieves higher accuracy and average precision, increasing from 89.2% to 93.2% and from 92.2% to 95.7%, respectively. Overall, our model enhances detection accuracy, providing a reliable foundation for the accurate detection of fishes.


Assuntos
Algoritmos , Animais , Peixes , Redes Neurais de Computação , Aquicultura/métodos
3.
Anal Chem ; 93(11): 4876-4883, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33660989

RESUMO

Although homogeneous detection of some biomolecules has been of great significance in clinical assay, it faces great challenges in achieving precise in situ imaging of biomolecules. In addition, nonspecific adsorption between probes and biomolecules and low sensitivity are still unfathomed problems. Herein, we developed a promoted "Click" surface enhanced Raman scattering (SERS) strategy for realizing highly selective homogeneous detection of biomolecules by simultaneous dual enhanced SERS emissions, obtaining mutually confirmed logical judgment. Taking caspase-3 as one of the biotargets, we have realized highly selective homogeneous detection of caspase-3 using this strategy, and precise intracellular imaging of caspase-3 can be in situ monitored in living cells or during cell apoptosis. In detail, polyA-DNA and the Asp-Glu-Val-Asp (DEVD)-containing peptide sequence were modified into alkyne and nitrile-coded Au nanoparticles (NPs). During the cell apoptosis process, the generated caspase-3 would lead to the cleavage of the tetra-peptide sequence DEVD, thereby removing the negative protection part from the peptide on Au NPs. Interestingly, two different triple bond-labeled Au NPs can be connected together through DNA hybridization to form SERS "hotspot", resulting in simultaneously enlarged triple bond Raman signals. Moreover, we found that the SERS intensity was positively related with caspase-3 concentration, which has a wide linear range (0.1 ng/mL to 10 µg/mL) and low detection limit (7.18 × 10-2 ng/mL). Remarkably, these simultaneously enlarged signals by "Click" SERS could be used for more precise imaging of caspase-3, providing mutually confirmed logical judgment based on two spliced SERS emissions, especially for their relative intensity.


Assuntos
Ouro , Nanopartículas Metálicas , Caspase 3 , DNA , Análise Espectral Raman
4.
Small ; 17(2): e2006370, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325632

RESUMO

The analysis of mutant nucleic acid (NA) variants can provide crucial clinical and biological insights for many diseases. Yet, existing analysis techniques are generally constrained by nonspecific "noise" signals from excessive wildtype background sequences, especially under rapid isothermal multiplexed target amplification conditions. Herein, the molecular hybridization chemistry between NA bases is manipulated to suppress noise signals and achieve ultraselective multiplexed detection of cancer gene fusion NA variants. Firstly, modified locked NA (LNA) bases are rationally introduced into oligonucleotide sequences as designed "locker probes" for high affinity hybridization to wildtype sequences, leading to enrichment of mutant variants for multiplexed isothermal amplification. Secondly, locker probes are coupled with a customized "proximity-programmed" (SERS) readout which allows precise control of hybridization-based plasmonic signaling to specifically detect multiple target amplicons within a single reaction. Moreover, the use of triple bond Raman reporters endows NA noise signal-free quantification in the Raman silent region (≈1800-2600 cm-1 ). With this dual molecular hybridization-based strategy, ultraselective multiplexed detection of gene fusion NA variants in cancer cellular models is actualized with successful noise suppression of native wildtype sequences. The distinct benefits of isothermal NA amplification and SERS multiplexing ability are simultaneously harnessed.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Hibridização de Ácido Nucleico
5.
Anal Biochem ; 631: 114369, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34516968

RESUMO

In the work, a rapid and accurate biosensor for mercury ions (Hg2+) was constructed, with which aggregation of dual-modified (DGPFHR- and CALNN-) gold nanoparticles (D/C-AuNPs) could be triggered by the high specificity of peptides to Hg2+. The given peptide DGPFHR possesses great capability of capturing Hg2+, accompanied by the conformational folding. Under the circumstances, D/C-AuNPs were employed as the detection probes to accomplish the quantitative analysis of Hg2+. This is primarily because the specific Hg2+-induced folding of peptides reduces the electrostatic repulsion and steric hindrance, thus accelerating the AuNPs aggregation. The principle and application potential of this proposal was proved by evidence. And the results demonstrated that Hg2+ ions could be selectively detected as low as 28 nM with a linear range of 100-800 nM. In consideration of superior simplicity, selectivity, accuracy and stability, the protocol was advantageous over other projects in practical measurement of various water samples.


Assuntos
Colorimetria/métodos , Mercúrio/análise , Nanopartículas Metálicas/química , Peptídeos/química , China , Colorimetria/instrumentação , Ouro/química , Concentração de Íons de Hidrogênio , Lagos/análise , Lagos/química , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/instrumentação , Ressonância de Plasmônio de Superfície , Poluentes Químicos da Água/análise
6.
BMC Nurs ; 20(1): 78, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001128

RESUMO

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, exploring factors influencing nosocomial infection among frontline nurses may provide evidence to optimize prevention strategies in hospitals. METHOD: A large-scale online questionnaire survey of nurses' state-trait anxiety, job burnout, risk perception, workplace safety perception, knowledge about nosocomial infection, and preventive practices was conducted with 2795 frontline nurses working in the COVID-19 wards of six hospitals in Hubei Province, China, from February 1 to April 1, 2020. The questionnaire data were analyzed using the structural equation modeling (SEM) method to reveal the mechanisms influencing nurses' risk perception and preventive practices related to nosocomial COVID-19 infection. RESULTS: A model of the factors that influence nurses' risk perception and preventive practices regarding nosocomial COVID-19 infection was established. The model verified hypotheses regarding the impact of nurses' risk perception and preventive practices. Notably, the hypothesis that risk perception has an impact on nurses' preventive practices regarding nosocomial infection is not valid. Moreover, different marital and educational conditions are associated with significant differences in the impact of state anxiety on the execution of preventive practices, the impact of workplace safety perceptions on risk perception, and the impact of workplace safety perceptions on the execution of preventive practices. The effect of state anxiety on preventive practices differed significantly with different durations of work experience. CONCLUSIONS: According to the results of the influencing factor model, promoting the quality of training on nosocomial infection, meliorating workplace safety, and conducting timely and effective psychological interventions would aid in improving nurses' preventive practices. Meliorating workplace safety and easing state anxiety would be beneficial to reduce nurses' risk perception. These strategies are conducive to the optimization of policies for preventing nosocomial COVID-19 infections and similar infectious diseases.

7.
Angew Chem Int Ed Engl ; 60(40): 21846-21852, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34227191

RESUMO

Stimulated Raman scattering (SRS) microscopy in combination with innovative tagging strategies offers great potential as a universal high-throughput biomedical imaging tool. Here, we report rationally tailored small molecular monomers containing triple-bond units with large Raman scattering cross-sections, which can be polymerized at the nanoscale for enhancement of SRS contrast with smaller but brighter optical nanotags with artificial fingerprint output. From this, a class of triple-bond rich polymer nanoparticles (NPs) was engineered by regulating the relative dosages of three chemically different triple-bond monomers in co-polymerization. The bonding strategy allowed for 15 spectrally distinguishable triple-bond combinations. These accurately structured nano molecular aggregates, rather than long-chain macromolecules, could establish a universal method for generating small-sized biological SRS imaging tags with high sensitivity for high-throughput multi-color biomedical imaging.


Assuntos
Nanopartículas/química , Imagem Óptica , Polímeros/química , Humanos , Células MCF-7 , Estrutura Molecular , Análise Espectral Raman
8.
Anal Chem ; 92(19): 13539-13549, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924435

RESUMO

Here, it reports a high-throughput detection method for reliably quantitative analysis of illegal drugs in complex biological samples by means of a surface-enhanced Raman scattering (SERS) active microcavity and rapid pretreatment device. Based on the well-made hemispherical microcavities that regularly distributed on a glass array, the quality-controllable microcavity device is fabricated by the compact self-assembly of core-shell nanopeanuts (CSNPs) onto the inside surface. Both the CSNPs with a quantifiable internal standard signal of crystal violet acetate anchored inside their gap and the well-made microcavity referred to the physical amplification of the microscale groove surface will do well in trace analysis, which will allow us to realize the accurately quantitative SERS analysis of targeted analytes spread on the bottom area of the microcavity array. As an example, 0.8 nM malachite green and 160 ppb methamphetamine (MATM) have been successively detected in a wide range as standard, while even 0.01 ppm MATM mixed in the urine/serum samples has been efficiently tested by the microcavity device equipped with a rapid pretreatment device (manual monolithic column syringe needle). All of the above suggest that the SERS-active microcavity equipped with a rapid pretreatment device has potential in the on-site quick test of trace amounts of illegal drugs in bodily fluid samples or other field analysis of food sanitation, environmental safety, and public health.


Assuntos
Metanfetamina/sangue , Metanfetamina/urina , Ouro/química , Humanos , Nanopartículas Metálicas/química , Análise Espectral Raman , Propriedades de Superfície
9.
Anal Chem ; 91(21): 13866-13873, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31603655

RESUMO

High-throughput optical labeling technologies have become increasingly important with the growing demands for molecular detection, disease diagnosis, and drug discovery. In this thought, a series of CN-bridged coordination polymer encapsulated gold nanoparticles have been developed as a universal and interference-free optical label through a facile and auxiliary agent-free self-assembly route. Moreover, surface-enhanced Raman scattering (SERS) emissions of CN-bridge can be tuned flexibly by simple replacement of Fe2+/Fe3+ with other metal ions relying on the synthesis of three Prussian blue analogues encapsulated gold nanoparticles (Au@PBA NPs). Thus, three distinct Raman frequencies have been acquired, which merely replaced the metal irons. On the basis of the potential supermultiplex optical label, space-confined surface-enhanced Raman scattering (SERS) emissions have been realized. Relying on "Abbe theorem", the focused laser allows the pure and single triple bond-coded SERS emissions to be combined into a unique and independent output, so-called "combined SERS emission" (c-SERS), if the Au@PBA NPs were confined into one micrometer-scale object. This study demonstrated c-SERS may simultaneously provide 2n - 1 optical labels only using n single emissions in the Raman-silent region for micrometer-size objects.

10.
Anal Chem ; 91(4): 2955-2963, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30689353

RESUMO

Establishing an accurate, simple, and rapid serodiagnosis method aiming for specific cancer antigens is critically important for the clinical diagnosis, therapy, and prognostication of cancer. Currently, surface-enhanced Raman scattering (SERS) readout techniques challenge fluorescent-based detection methods in terms of both optical stability and more importantly multiple detection capability, which become more desirable for clinical diagnostics. We thus started using an interference-free mixing SERS emission (m-SERS) readout to simultaneously indicate, for the first time, three specific liver cancer antigens, including α-fetoprotein (AFP), carcinoembryonic antigen (CEA), and ferritin (FER), even in one clinical serum sample. Here, three triple bonds (C≡N and C≡C) coded SERS tags contribute separate SERS emissions located at 2105, 2159, and 2227 cm-1, respectively; must have one-to-one correspondence from AFP, to FER, to CEA, In the process of detection, the mature double antibody sandwich allows the formation of microscale core-satellite assembly structure between a magnetic bead (MB) and single SERS tags, and therefore a pure and single SERS emission can be observed under the routine excitation laser spot. Because of the action of magnetic force, the uniform 3D packing of SERS tags absorbed MBs will in contrast generate a so-called m-SERS signals. With the help of enrichment and separation by MBs, the proposed m-SERS immunoassay provides an extremely rapid, sensitive, and accurate solution for multiplex detection of antigens or other biomarkers. Herein, the limit of detection (LOD) for simultaneous m-SERS detection of AFP, CEA, and FER was 0.15, 20, and 4 pg/mL, respectively. As expected for 39 clinical serum samples, simultaneous detection of ternary specific antigens can significantly improve the accuracy of liver cancer diagnosis.


Assuntos
Antígenos de Neoplasias/análise , Neoplasias Hepáticas/diagnóstico por imagem , Ouro/química , Humanos , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
11.
J Am Chem Soc ; 140(34): 10649-10652, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-29975521

RESUMO

Here, a completely new readout technique, so-called "Click" SERS, has been developed based on Raman scattered light splice derived from nanoparticle (NP) assemblies. The single and narrow (1-2 nm) emission originating from triple bond-containing reporters undergoes dynamic combinatorial output, by means of controllable splice of SERS-active NPs analogous to small molecule units in click chemistry. Entirely different to conventional "sole code related to sole target" readout protocol, the intuitional, predictable and uniquely identifiable "Click" SERS is relies on the number rather than the intensity of combinatorial emissions. By this technique, 10-plex synchronous biomarkers detection under a single scan, and accurate cellular imaging under double exposure have been achieved. "Click" SERS demonstrated multiple single band Raman scattering could be an authentic optical analysis method in biomedicine.


Assuntos
Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Aptâmeros de Nucleotídeos/química , Biomarcadores/análise , DNA/análise , DNA/genética , Receptores ErbB/análise , Receptores ErbB/química , Ouro/química , Células HeLa , Humanos , Hibridização de Ácido Nucleico , Imagem Óptica/métodos , Tamanho da Partícula , Estudo de Prova de Conceito
12.
Anal Chem ; 89(19): 10335-10342, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28880066

RESUMO

Field, reliable, and ultrasensitive detection of dipicolinic acid (DPA), a general biomarker of bacterial spores and especially Bacillus anthracis, is highly desirable but still challenging in current biometric security emergency response system. Herein we report an environmentally safe mercury(II) ions-mediated and competitive coordination interaction based approach for rationally designed surface-enhanced Raman scattering (SERS)-active gold nanoparticles (AuNPs), enabling rapid, ultrasensitive and zero-background detection of DPA without the pretreatment of samples. By means of competitiveness, these papain-capped gold nanoparticles (P-AuNPs) are induced to undergo controllable aggregation upon the addition of Hg2+ ions and DPA with a concentration range (1 nM∼8 µM), which correspondingly cause quantitative changes of SERS intensity of cresyl violet acetate (CVa) conjugated AuNPs. The decreased Raman intensity obtained by subtracting two cases of additives that contain only Hg2+ and the mixture of Hg2+ and DPA is proportional to the concentration of DPA over a range of 1 nM∼8 µM (R2 = 0.9824), with by far the lowest limit of detection (LOD) of 67.25 pM (0.01 ppb, S/N = 3:1). Of particular significance, mercury(II) ions actually play two roles in the process of measurements: a mediator for two designed competitive ligands (DPA and papain), and also a scavenger for the possibly blended ligands due to the different interaction time between DPA and the interferent with Hg2+ ions, which guarantees the interference-free detection of DPA even under real conditions.


Assuntos
Mercúrio/química , Ácidos Picolínicos/análise , Análise Espectral Raman , Bacillus anthracis/metabolismo , Benzoxazinas/química , Ouro/química , Íons/química , Limite de Detecção , Nanopartículas Metálicas/química , Papaína/química , Papaína/metabolismo , Tamanho da Partícula
13.
Anal Chem ; 88(12): 6115-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27223333

RESUMO

The alkyne tags possess unique interference-free Raman emissions but are still hindered for further application in the field of biochemical labels due to its extremely weak spontaneous Raman scattering. With the aid of computational chemistry, herein, an alkyne-modulated surface-enhanced Raman scattering (SERS) palette is constructed based on rationally designed 4-ethynylbenzenethiol derivatives for spectroscopic signature, Au@Ag core for optical enhancement and an encapsulating polyallylamine shell for protection and conjugation. Even for the pigment rich plant cell (e.g., pollen), the alkyne-coded SERS tag can be highly discerned on two-dimension distribution impervious to strong organic interferences originating from resonance-enhanced Raman scattering or autofluorescence. In addition, the alkynyl-containing Raman reporters contribute especially narrow emission, band shift-tunable (2100-2300 cm(-1)) and tremendously enhanced Raman signals when the alkynyl group locates at para position of mercaptobenzene ring. Depending on only single Raman band, the suggested alkyne-modulated SERS-palette potentially provides a more effective solution for multiplex cellular imaging with vibrant colors, when the hyperspectral and fairly intense optical noises originating from lower wavenumber region (<1800 cm(-1)) are inevitable under complex ambient conditions.


Assuntos
Alcinos/química , Análise Espectral Raman , Ouro/química , Células HeLa , Humanos , Lilium/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Fenóis/química , Pólen/química , Poliaminas/química , Prata/química , Compostos de Sulfidrila/química
14.
Anal Chem ; 88(7): 3789-95, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928162

RESUMO

Biosensors always suffer from passivation that prevents their reutilization. To address this issue, photocatalytically renewable sensors composed of semiconductor photocatalysts and sensing materials have emerged recently. In this work, we developed a robust and versatile method to construct different kinds of renewable biosensors consisting of ZnO nanorods and nanostructured Au. Via a facile and efficient photochemical reduction, various nanostructured Au was obtained successfully on ZnO nanorods. As-prepared sensors concurrently possess excellent sensing capability and desirable photocatalytic cleaning performance. Experimental results demonstrate that dendritic Au/ZnO composite has the strongest surface-enhanced Raman scattering (SERS) enhancement, and dense Au nanoparticles (NPs)/ZnO composite has the highest electrochemical activity, which was successfully used for electrochemical detection of NO release from cells. Furthermore, both of the SERS and electrochemical sensors can be regenerated efficiently for renewable applications via photodegrading adsorbed probe molecules and biomolecules. Our strategy provides an efficient and versatile method to construct various kinds of highly sensitive renewable sensors and might expand the application of the photocatalytically renewable sensor in the biosensing area.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Óxido de Zinco/química , Catálise , Cloretos/química , Reutilização de Equipamento , Compostos de Ouro/química , Oxirredução , Processos Fotoquímicos , Análise Espectral Raman
15.
Analyst ; 141(10): 3027-32, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27064061

RESUMO

We report on a continuous and non-invasive approach in vivo to monitor arterial blood pH based on the laser trapping and Raman detection of single live erythrocytes. A home-built confocal laser tweezers Raman system (LTRS) is applied to trace the live erythrocytes at different pH values of the extracellular environment to record their corresponding Raman changes in vitro and in vivo. The analysis results in vitro show that when the extracellular environment pH changes from 6.5 to 9.0, the Raman intensity ratio (R1603, 1616 = I1603/I1616) of single erythrocytes decrease regularly; what is more, there is a good linear relationship between these two variables, and the linearity is 0.985, which is also verified successfully via in vivo Raman measurements. These results demonstrate that the Raman signal of single live erythrocytes is possible as a marker of the extracellular pH value. This in vivo and quantitative Raman-pH sensor of arterial blood will be an important candidate for monitoring the acid-base status during the treatment of ill patients and in some major surgeries because of its continuous and non-invasive characters.


Assuntos
Eritrócitos/citologia , Pinças Ópticas , Análise de Célula Única , Análise Espectral Raman , Humanos , Lasers
16.
Analyst ; 141(17): 5195-201, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27435510

RESUMO

Nitrites (NO2(-) ions) in food and drink play an important role in human health but require complicated operations before detection. Herein, we present a rationally designed SERS-enabled micro-chamber that comprised a drawn glass capillary with a tiny orifice (∼50 µm) at the distal tip, wherein the gold nanoparticles (Au NPs) are compactly coated on the inner wall surface. In this chamber, nitrites specifically trigger a pH and laser irradiance-dependent diazotization starting from p-aminothiophenol (PATP) absorbed onto the surface of Au NPs to form p,p'-dimercaptoazobenzene (DMAB) molecules, in which the presence of NO2(-) ions above 30.7 µM (1.38 ppm) in the siphoned liquid sample can be identified relying on SERS peak (1141 cm(-1)) intensity of the emerging azo moiety. Except for pH conditions, laser irradiance is more important but easily neglected in previous studies, which is capable of preventing generation of errors when the detection sensitivity was pursued through increasing the laser power. In this case, several real samples (rather than simple water samples), including honey, pickled vegetable and fermented bean curd, had been successfully detected accurately through such a convenient sampling micro-chamber. The SERS-enabled device could potentially be facilely incorporated with portable Raman instruments for a special application of food inspection in rapid and field analysis of NO2(-) ions.

17.
Anal Chem ; 87(18): 9217-24, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26274894

RESUMO

We report the first microsampling device for reliably quantitative, label-free and separation-free detection of multicomponents of surface organic residues (SORs) by means of a quality controllable surface-enhanced Raman scattering (SERS)-enabled micropipette. The micropipette is comprised of a drawn glass capillary with a tiny orifice (∼50 µm) at the distal tip, where the specially designed nanorattles (NRs) are compactly coated on the inner wall surface. SERS signals of 4-mercapto benzoic acid (MBA) anchored inside the internal gap of NRs could be used to evaluate and control the quality of micropipettes and, therefore, allow us to overcome the limitations of a reliably quantitative SERS assay using traditional substrates without an internal standard. By dropping a trace extraction agent on targeting SORs located on a narrow surface, the capillary and SERS functionalities of these micropipettes allow on-site microsampling via capillary action and subsequent multiplex distinction/detection due to their molecularly narrow Raman peaks. For example, 8 nM thiram (TMTD), 8 nM malachite green (MG), and 1.5 µM (400 ppb) methyl parathion (MPT) on pepper and cucumber peels have been simultaneously detected in a wide detection range. The portable SERS-enabled device could potentially be facilely incorporated with liquid-liquid or solid phase micro-extracting devices for a broader range of applications in rapid and field analysis of food/public/environment security related SORs.


Assuntos
Nanotecnologia/instrumentação , Compostos Orgânicos/análise , Compostos Orgânicos/química , Análise Espectral Raman/instrumentação , Benzoatos/química , Modelos Moleculares , Conformação Molecular , Polilisina/química , Compostos de Sulfidrila/química , Propriedades de Superfície
18.
Chemistry ; 21(41): 14301-4, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26383965

RESUMO

Herein, we presented a novel logic gate based on an INHIBITION gate that performs parallel readouts. Logic gates performing INHIBITION and YES/OR were constructed using surface-enhanced Raman scattering as optical outputs for the first time. The strategy allowed for simultaneous reading of outputs in one tube. The applicability of this strategy has been successfully exemplified in the construction of half-adder using the two-output logic gates as reporting gates. This reporting strategy provides additional design flexibility for dynamic DNA devices.


Assuntos
DNA/química , Análise Espectral Raman/métodos , Sequência de Bases , Conformação de Ácido Nucleico
19.
Phys Chem Chem Phys ; 17(33): 21261-7, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25622685

RESUMO

Anisotropic metallic nanoparticles (NPs) possess unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS). However, their preparation by an efficient, biocompatible and high yield synthetic method is still challenging. In this work, we demonstrate a simple and reproducible way to produce chitosan (CS) encapsulated gold-silver nanoflowers by sequentially adding chitosan, chloroauric acid, silver nitrate, and ascorbic acid to water at room temperature. This is a one-pot, seed- and surfactant-free synthetic method, which is simple and credible. CS is used to modulate the size of NPs, while AgNO3 is introduced to improve the monodispersity and homogeneity of NPs. Highly sensitive, spectrally and physically stable SERS tags are developed in virtue of the cooperative effect of CS and Ag(+). Cresyl violet (CV) is applied as a Raman reporter to test the SERS property of NPs, and the results demonstrated that the nanoflowers exhibited stronger and more stable SERS signals than those of spherical gold nanoparticles. Importantly, after being modified by tumor cell-specific targeting ligands (folic acid), the sensitive and stable labeled nanoflowers are applied for cancer cell targeting and SERS imaging.


Assuntos
Quitosana/química , Ouro/química , Nanoestruturas/química , Prata/química , Análise Espectral Raman , Benzoxazinas/química , Ácido Fólico/química , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão
20.
Analyst ; 139(11): 2904-11, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24761432

RESUMO

We report a new and efficient protocol for rapid electrodeposition of a gold-Prussian blue ((Au-PB)REd) nanocomposite with ultrahigh electroactivity on an Au electrode by cyclic voltammetry in 0.1 M aqueous K2SO4 containing 1 mM K3Fe(CN)6, 1 mM HAuCl4, and 0.1 mM Fe2(SO4)3, and an electrochemical quartz crystal microbalance and scanning electron microscopy were utilized to investigate the electrodeposition. The (Au-PB)REd/Au electrode was then cast-coated with a urate oxidase (UOx)-poly(anilineboronic acid) (PABA)-Pt nanoparticle (PtNP) bionanocomposite and chitosan (CS) for high-performance amperometric biosensing of uric acid (UA) in the dual-potential mode. The UOx-PABA-PtNP bionanocomposite was prepared through chemical oxidation of anilineboronic acid (ABA) by sodium chloroplatinate in the presence of UOx. The thus-fabricated CS/UOx-PABA-PtNP/(Au-PB)REd/Au enzyme electrode worked well under optimized conditions through both oxidation and reduction determination of enzyme-generated H2O2, which responded linearly to UA concentrations from 0.3 µM to 0.65 mM with a sensitivity of 223 µA mM(-1) cm(-2) and a limit of detection (LOD) of 0.2 µM (0.7 V vs. SCE), and from 0.2 µM to 0.25 mM with a sensitivity of 247 µA mM(-1) cm(-2) and a LOD of 0.1 µM (-0.05 V vs. SCE), being superior to most analogues hitherto reported for biosensing of UA.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas/métodos , Ferrocianetos/química , Ouro/química , Nanocompostos , Ácido Úrico/análise , Eletrodos , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA