Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Langmuir ; 40(15): 7843-7859, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557084

RESUMO

Two-dimensional materials have shown immense promise for gas-sensing applications due to their remarkable surface-to-volume ratios and tunable chemical properties. However, despite their potential, the utilization of ReSe2 as a gas-sensing material for nitrogen-containing molecules, including NO2, NO, and NH3, has remained unexplored. The choice of doping atoms in ReSe2 plays a pivotal role in enhancing the gas adsorption and gas-sensing capabilities. Herein, the adsorption properties of nitrogen-containing gas molecules on metal and non-metal single-atom (Au, Pt, Ni, P, and S)-doped ReSe2 monolayers have been evaluated systematically via ab initio calculations based on density functional theory. The findings strongly suggest that intrinsic ReSe2 has better selectivity toward NO2 than toward NO and NH3. Moreover, our results provide compelling evidence that all of the dopants, with the exception of S, significantly enhance both the adsorption strength and charge transfer between ReSe2 and the investigated molecules. Notably, P-decorated ReSe2 showed the highest adsorption energy for NO2 and NO (-1.93 and -1.52 eV, respectively) with charge transfer above 0.5e, while Ni-decorated ReSe2 exhibited the highest adsorption energy for NH3 (-0.76 eV). In addition, on the basis of transition theory, we found that only Au-ReSe2 and Ni-ReSe2 can serve as reusable chemiresisitve gas sensors for reliable detection of NO and NH3, respectively. Hence, our findings indicate that gas-sensing applications can be significantly improved by utilizing a single-atom-doped ReSe2 monolayer.

2.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36689767

RESUMO

To increase the specific capacitance of supercapacitors, polyaniline (PANI) has been chosen as additive electrode material for the pseudocapacitive performance. Here, we synthesize a molecular-level uniform reduced graphene oxide/PANI (rGO/PANI) composite film with high flexibility and conductivity via self-assembly and specific thermal reduction, which performs great potential in flexible supercapacitors with high areal capacitance. Particularly, the electrode of rGO/PANI-42.9% exhibits a high specific areal capacitance (1826 mF cm-2at 0.2 mA cm-2), and it also presents a good cycling stability (it remains 76% of its initial capacitance after 10 500 cycles). Moreover, the specific gravimetric capacitance of rGO/PANI-33.3% reaches up to 256.4 F g-1at 0.2 A g-1, showing greatly enhanced performance compared with the pure rGO electrode (183 F g-1). The results of various characteristic analysis demonstrate that electrochemical performance of the as-prepared rGO/PANI film is closely associated with the uniform distribution of PANI in rGO/PANI composite. Overall, our reported method is convenient and environmental-friendly, and could be beneficial for the development of high-performance capacitive energy storage materials.

3.
Phys Chem Chem Phys ; 25(42): 28677-28690, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37849357

RESUMO

Vertical van der Waals (vdW) heterostructures have shown potential for gas sensing owing to their remarkable sensitivity. However, the optimization process for achieving the best gas sensing performance is complicated by the heterostructure's reliance on both physical and electrical characteristics. This study employs density functional theory (DFT) to analyse the structural and electronic parameters of a MoTe2/InN vdW heterostructure. The findings of this study indicate that the vdW heterostructure has a type-II band alignment with higher adsorption energy towards NH3, NO2, and SO2 than the individual monolayers. In specific, the heterostructure is well suited for NO2 detection but has limitations in reliably detecting NH3 and SO2 due to longer recovery times. We find significant hybridization between the adsorbate and interacting surfaces' orbitals and a notable presence of NO2 molecular orbitals in proximity to the Fermi level. Additionally, dielectric and work function modulations offer a viable means to develop optical-based gas sensors that can selectively detect NO2. Our research provides valuable insights into vdW heterostructure design for high-performance gas sensors.

4.
Nano Lett ; 22(12): 4999-5008, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679350

RESUMO

The sluggish redox kinetics of sulfur and the uncontrollable growth of lithium dendrites are two main challenges that impede the practical applications of lithium-sulfur (Li-S) batteries. In this study, a multifunctional host with vacancy-rich MoSSe vertically grown on reduced graphene oxide aerogels (MoSSe/rGO) is designed as the host material for both sulfur and lithium. The embedding of Se into a MoS2 lattice is introduced to improve the inherent conductivity and generate abundant anion vacancies to endow the 3D conductive graphene based aerogels with specific sulfiphilicity-lithiophilicity. As a result, the assembled Li-S batteries based on MoSSe/rGO exhibit greatly improved capacity and cycling stability and can be operated under a lean electrolyte (4.8 µL mg-1) and a high sulfur loading (6.5 mg cm-2), achieving a high energy density. This study presents a unique method to unlock the catalysis capability and improve the inherent lithiophilicity by heteroatom doping and defect chemistry for kinetics-enhanced and dendrite-free Li-S batteries.

5.
Langmuir ; 37(4): 1596-1604, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481594

RESUMO

Rational design and scalable construction of antibacterial mediators based on unique graphene architectures with highly efficient antibacterial ability and significant biocompatibility are challenging. Herein, sulfur-doped graphene skeletons uniformly decorated with metal oxide nanoparticles were designed and constructed via one-step laser-induced microexplosive techniques and demonstrated for the first time as highly efficient antibacterial agents. The optical density and flat colony counting methods demonstrated that the as-designed laser-induced MoOx/sulfur-doped graphene hybrids exhibited exceptional activity inhibition of Escherichia coli and Staphylococcus aureus. Moreover, the bacteria were treated with an impressive laser-induced MoOx/sulfur-doped graphene colloidal solution of concentration as low as 1 mg/mL for 4 h, leading to an excellent viability loss of 85% for the two bacteria. Cell toxicity experiments proved that the biological toxicity of laser-induced MoOx/sulfur-doped graphene to pig sperm cells was negligible. The molecular dynamics calculations proposed that the intrinsic interaction with N-acetylglucosamine at the cell wall and the high-efficiency synergistic effect of sulfur-doped graphene and MoOx played the key role in inhibiting the viability of bacteria. This work provides new insights for a novel structure design and opens up a potential route to construct antibacterial agents with high efficiency for clinical application.


Assuntos
Grafite , Animais , Antibacterianos/toxicidade , Grafite/toxicidade , Lasers , Staphylococcus aureus , Enxofre , Suínos
6.
Nanotechnology ; 32(50)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34517362

RESUMO

Anode materials based on lithium titanate (LTO)/graphene composites are considered as ideal candidates for high-rate lithium-ion batteries (LIBs). Considering the blocking effects of graphene nanosheets in electrodes during ion-transfer processes, construction of LTO/graphene composite structures with enhanced electrical and ionic conductivity via facile and scalable techniques is still challenging for high-rate LIB. In this work, structures of anode materials based on LTO nanoplates embedded with graphene quantum dots (GQDs) are demonstrated for high-rate LIB. The hybrids can be facilely prepared viain situintroduction of GQDs during the process LTO preparation, which enables a uniform dispersion of GQDs within LTO. This method is convenient, rapid, and can be easily scaled-up. The introduction of 0.05 wt.% GQDs can greatly enhance the electrochemical performance of the electrodes. The electrodes with 0.05 wt.% GQDs deliver a specific discharge capacity of 185, 181 and 179 mAh g-1at 5, 10, and 20 C, respectively. The performance enhancement is suggested to be due to the synergistic interactions between LTO and GQDs. The strategy as well as as-designed structures of LTO/GQDs show potentials for application as high-rate anode materials in LIBs application.

7.
Nanotechnology ; 32(44)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34315147

RESUMO

Tungsten disulfide (WS2) nanosheets (NSs) have become a promising room-temperature gas sensor candidate due to their inherent high surface-to-volume ratio, tunable electrical properties, and high on-state current density. For further practical applications of WS2-based gas sensors, it is still necessary to overcome the insensitive response and incomplete recovery at room temperature. In this work, we controllably synthesized high-performance ammonia (NH3) gas sensor based on CuO decorated WS2NSs. The optimized p-p WS2/CuO heterojunctions improve the surface catalytic effect, thereby enhancing the gas-sensing performance. The pure WS2NSs-based gas sensors showed a low response and an incomplete recovery in the case of NH3sensing. After the functionalization of CuO nanoparticles, the WS2/CuO heterostructure-based gas sensor exhibits an improved response value of 40.5% to 5  ppm NH3and full recoverability without any external assistance. Density functional theory calculations illustrate that the adsorption of CuO for NH3is much superior to WS2. The p-p heterojunctions strategy demonstrated in this work has great potential in the design of sensitive materials for gas sensors, and provides useful guidance for enhancing the room-temperature sensitivity and recoverability.

8.
Phys Chem Chem Phys ; 23(34): 18359-18368, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612377

RESUMO

Two-dimensional (2D) layered nanomaterials have attracted increasing attention in gas sensing due to their graphene-like properties. Although the gas sensing performances of 2D layered semiconductor transition metal dichalcogenides (TMDs), including MoS2, WS2, MoSe2 and WSe2, have been extensively studied, it has remained a grand challenge to develop a high-performance gas sensing material that can meet practical applications. Tantalum disulfide (TaS2), as a metallic TMD with low resistance and high current signal, has great promise in high-performance gas sensing. In stark contrast with Mo and W, Ta has a stronger positive charge, which contributes to a higher surface energy to capture gas molecules. Herein, through calculating the adsorption energy, charge transfer, electronic structure, and work function of the adsorption system with first-principles calculations, we first systematically studied the performance of noble metal atom substitution doping on a TaS2 monolayer for toxic nitrogen-containing gas (NH3, NO and NO2) sensing. We found that the TaS2 monolayer exhibits excellent NO sensing performance with an adsorption energy of 0.49 eV and a charge transfer of 0.17 e. However, it has a considerable adsorption energy (-0.22 and -0.39 eV) to NH3 and NO2 molecules, but a low charge transfer (-0.03 and 0.04 e) between the gas molecules and the TaS2 monolayer. To further enhance the gas-sensing performance of the TaS2 monolayer, noble metal atoms (Ag, Au, Pd and Pt) were substitutionally doped into the lattice of the TaS2 monolayer. The results showed that the values of adsorption energy and charge transfer can be significantly improved, and the electronic structure and work function of the doping system has also greatly changed, which makes it much easier to detect the changes in electrical signal due to gas adsorption. Our work indicates that the intrinsic as well as the noble metal doped TaS2 monolayers are promising candidates for high-performance gas sensors.

9.
Nanotechnology ; 31(7): 075501, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31661676

RESUMO

While continuously developing high-performance chemoresistive gas sensors, reducing device power consumption is not negligible. One of the most efficient ways is to enable gas sensors to work close to room temperature. In this work, we present a gas sensor based on hexagonal tin disulfide (SnS2) nanoplates for sensitive and reversible NO2 sensing at room temperature. Two-dimensional SnS2 nanoplates are synthesized via a facile hydrothermal method using Triton X-100 as a surfactant. The sensor exhibits a high response of 15.6 for 50 ppm NO2 with an experimental limit of detection of 50 ppb at room temperature. Besides, excellent linearity, outstanding selectivity, and reliable long-term stability within 40 d are also demonstrated during the experiment process. The sensing mechanism of this sensor could be explained as the physisorption and charge transfer between NO2 molecules and SnS2 nanoplates, which make it possible for the sensor to work at such a low operating temperature. Our research resulted in a SnS2 nanoplate-based sensor that may pave a new way for effective NO2 detection in the future.

10.
Nanotechnology ; 31(33): 335102, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32303014

RESUMO

Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab resulted in enhanced antitumor activity, which overcomes the resistance to trastuzumab monotherapy. Herein, we have developed branched polyethylenimine-functionalized carbon dot (BP-CD) nanocarriers, which exhibited efficient green fluorescent protein gene delivery and expression. The positively charged BP-CDs allowed for effective nucleic acid binding and displayed a highly efficient small interfering RNA (siRNA)-mediated delivery targeting of cancer cells. The transfection of BP-CDs and HER3 siRNA complexes down-regulated HER3 protein expression and induced significant cell growth inhibition in BT-474 cells. BP-CDs/HER3 siRNA complexes induced cell death of BT-474 cells through G0/G1 cell cycle arrest and apoptosis. The combined treatment of BP-CDs/HER3 siRNA complexes and trastuzumab caused greater cell growth suppression in BT-474 cells when compared to either agent alone. The findings suggest that this dual-targeted therapy with the combination of BP-CDs/HER3 siRNA and trastuzumab represents a promising approach in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Receptor ErbB-3/metabolismo , Trastuzumab/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Células COS , Carbono/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Regulação para Baixo , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptor ErbB-3/antagonistas & inibidores
11.
Phys Chem Chem Phys ; 22(33): 18499-18506, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32780036

RESUMO

Metal phthalocyanines (MPcs) have attracted great interest in the gas sensing field, but the long recovery time with hard desorption of gas has hindered their further practical application. The combination of cobalt and carboxyl groups increases the electron concentration. Herein, cobalt phthalocyanine (CoPc-COOH) modified with carboxyl groups was prepared and applied to detect nitrogen dioxide (NO2) and its sensing performance at room temperature was determined. These CoPc-COOH nanofibres have demonstrated outstanding recovery performance at an ultralow laser exposure. In particular, UV-Vis and FTIR results indicate no change in the molecular structure of CoPc-COOH powders before and after laser exposure. The enhancement in the recovery properties of the laser-assisted method can be attributed to the generation of electron and hole pairs in the CoPc-COOH nanofibres, where the adsorbed NO2 molecules transformed from NO2- to NO2 by taking one hole with faster desorption. Thus, our study provides a valuable gas sensing recovery mode and mechanism for constructing practical gas sensors.

12.
Nanotechnology ; 30(44): 445503, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31349238

RESUMO

Molybdenum selenide (MoSe2) has drawn significant interest due to its typical semiconductor properties. MoSe2 is a relatively novel material in the field of gas sensors especially at room temperature. Herein, we utilize a facile and efficient synthetic method of liquid-phase exfoliation to exfoliate bulk MoSe2 into nanosheets. Anhydrous ethanol is used as dispersant, so the low boiling point makes it easy to be removed from MoSe2 nanosheets, which does not affect the subsequent sensing performance. The exfoliated few-layered MoSe2 nanosheets shows significantly enhanced NO2 gas response (1500% to 10 ppm NO2 which is 18 times greater than pristine bulk MoSe2), a low detection concentration (50 ppb), an outstanding repeatability, a remarkable selectivity, and a reliable long-term device durability (more than 60 d) at room temperature (25 °C). The reason of the significant improvement in gas sensing performance can be attributed mainly to the higher surface-to-volume ratio of exfoliated MoSe2 nanosheets. It promotes the adsorption of gas molecules on the surface of the material, thereby facilitating the charge transfer process. The superior performance of this gas sensor makes MoSe2 nanosheets a potential candidate for room temperature NO2 detection.

13.
Nanotechnology ; 29(27): 275401, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29664416

RESUMO

A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm-3 at 0.3 A cm-3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm-3 at 0.5 A cm-3 and an outstanding energy density of 33.8 at 483 mW cm-3. Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm-3, indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

14.
Phys Chem Chem Phys ; 20(6): 4083-4091, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29354825

RESUMO

Molybdenum disulfide (MoS2)-based humidity sensors suffer from low sensitivity and long response time. Herein, this problem has been effectively solved by modifying MoS2 nanosheets using carbon dots (CDs) with abundant functional groups via a convenient and facile hydrothermal method. The mechanism for the enhanced humidity response of CD-modified MoS2 has been proposed through the characterization of physical and chemical properties of the as-prepared composites. The introduction of CDs is expected to enhance the adsorption of water molecules by increasing the specific surface area and surface active sites of the MoS2 nanosheets. Moreover, a three-dimensional conductive network is jointly established by the chemisorbed water molecules, CDs, and MoS2 nanosheets, which ensures continuous transmission of charges in a low humidity environment. As a result, the response performance and the repeatability have been significantly improved in CD-MoS2-based humidity sensors. The response curve shows an excellent linear property in the range of 15-80% RH. This study demonstrates the potential applications of CD-modified two-dimensional nanomaterials with their improved performance towards humidity sensing.

15.
Nanotechnology ; 28(33): 33LT01, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28721952

RESUMO

Nanocoatings of covalent organic frameworks (COFs) on nickel nanowires (NiNWs) have been designed and successfully fabricated for the first time, which showed greatly enhanced electrochemical performances for supercapacitors. The specific capacitance of electrodes based on as-fabricated COFs nanocoatings reached up to 314 F g-1 at 50 A g-1, which retained 74% of the specific capacitance under the current density of 2 A g-1. The ultrahigh current density makes the charge-discharge process extremely rapid. The outstanding electrochemical performances of COFs nanocoating on NiNWs make it an ideal candidate for supercapacitors. And the nanocoating-design can also give a guidance for application of COFs in high-performance energy storages.

16.
Phys Chem Chem Phys ; 19(29): 19043-19049, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28702546

RESUMO

High-performance gas sensors based on metal oxides operated at room temperature are of great interest due to their energy saving and cost effective characteristics. How to improve the sensitivity of metal oxide gas sensors and enable their room-temperature operation are challenging for their realistic applications. In this work, we have designed and fabricated Al-doped NiO nanosheets for greatly enhanced NO2 detection at room temperature. Different amounts of Al were doped into two-dimensional (2D) NiO nanosheets via a fast and facile microwave assisted solvent-thermal technique. Sensing tests of the as-fabricated devices indicated that Al doping could significantly affect the gas-sensing properties of the NiO nanosheets due to increased oxygen vacancies as well as the formation of Lewis acid and base sites. When 12 at% of Al was added to the raw materials, the response value of the device to 10 ppm NO2 was enhanced more than 35 times compared with those of pure NiO nanosheets. In addition, when the amount of Al reached 20 at%, it took only 200 s for the gas sensor to achieve full recovery, which was a breakthrough for room temperature gas sensors based on metal oxides. Above all, the excellent performances of the as-fabricated devices make Al-doped NiO nanosheets a potential candidate for NO2 sensing applications. This design strategy can also give guidance for designing high-performance gas sensors based on other similar 2D sensing materials.

17.
Langmuir ; 32(37): 9418-27, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27571475

RESUMO

Cuprous oxide (Cu2O) is an attractive photocatalyst because of its visible-light-driven photocatalytic behavior, abundance, low toxicity, and environmental compatibility. However, its short electron diffusion length and low hole mobility result in low photocatalytic efficiency, which hinders its wider applications. Herein, we report an in situ method to introduce nitrogen-doped carbon dots (N-CDs) into Cu2O frameworks. It is interestingly found that the introduction of N-CDs drives the morphology of N-CDs/Cu2O to evolve from rough cube to sphere, and the most encouraging result is that all of the obtained N-CDs/Cu2O composites exhibit better photocatalytic activities than pure Cu2O cubes. The optimal N-CDs/Cu2O photocatalyst is synthesized with 10 mL of N-CDs solution, which shows the best degradation ability (100%, 70 min), far superior to pure Cu2O cubes (∼5%, 70 min) and P25 (∼10%, 70 min). Beside the photodegradation of methyl orange, N-CDs/Cu2O(10) composites also exhibit excellent photocatalytic activities in the photodegradation of methyl blue and rhodamine B. It is demonstrated that the excellent photocatalytic performance of N-CDs/Cu2O composites can be attributed to the highly roughened structure and the suppression of electron-hole recombination as a result of the introduction of N-CDs. These findings demonstrate that the conjugation of CDs is a promising method to improve the photocatalytic activities for traditional semiconductors.

18.
Nanotechnology ; 27(26): 265703, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27196539

RESUMO

There has been a growing interest in gathering together photocatalysis of semiconductors, like cuprous oxide (Cu2O), and the excellent electron transmittability of graphene to produce a graphene-based semiconductor for photocatalytic degradation. In this paper, a mild one-pot in situ synthesis of cubic cuprous oxide-reduced graphene oxide (Cu2O-RGO) nanocomposites has been proposed for the removal of methyl orange. In contrast to pure cubic Cu2O particles under similar preparation conditions, the cubic Cu2O-RGO nanocomposites demonstrate enhanced visible-light-driven photocatalytic activity for methyl orange dye with a 100% degradation rate in 100 min. The enhanced photocatalytic performance is mainly attributed to the increased charge transportation, effective separation of photoelectrons from vacancies, and the improved contact area.

19.
Nanotechnology ; 27(39): 395706, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27573680

RESUMO

Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe(3+) with the limit of detection of 10(-5) M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.


Assuntos
Micro-Ondas , Carbono , Ferro , Nitrogênio , Oxigênio , Pontos Quânticos
20.
Nanotechnology ; 25(2): 025502, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24334417

RESUMO

Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide (rGO) are demonstrated in this work. rGO, which was prepared via the reduction of graphene oxide by pyrrole, exhibited excellent responsive sensitivity and selectivity to ammonia (NH3) gas. The high sensing performance of these rGO sensors with resistance change as high as 2.4% and response time as fast as 1.4 s was realized when the concentration of NH3 gas was as low as 1 ppb. Furthermore, the rGO sensors could rapidly recover to their initial states with IR illumination. The devices also showed excellent repeatability and selectivity to NH3. These rGO sensors, with low cost, low power, and easy fabrication, as well as scalable properties, showed great potential for ultrasensitive detection of NH3 gas in a wide variety of fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA