RESUMO
We report the first total synthesis of scleropentaside D, a unique C-glycosidic ellagitannin, from the ketal derivative of scleropentaside A employing site-selective O4-protection of C-acyl glycoside and copper-catalyzed oxidative coupling reaction of galloyl groups as the key steps. Our study confirms the proposed structure of this natural product, scleropentaside D, and demonstrates its effectiveness as an inhibitor of α-glycosidase.
Assuntos
Taninos Hidrolisáveis , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/síntese química , Estrutura Molecular , Glicosídeos/química , Glicosídeos/síntese química , Glicosídeos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , CatáliseRESUMO
Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.
Assuntos
Digoxina , Flúor , Halogenação , Hexoses , EstereoisomerismoRESUMO
We have developed an improved cyanide-free strategy for the synthesis of glycosyl carboxylic acids, employing stereoselective C-vinyl glycosylation and oxidative cleavage of C-vinyl glycosides as key steps. Compared to our previous work, the amount of NaIO4 required for the oxidative cleavage step is reduced significantly from 18 equivalents to 4.5 equivalents. This modification not only is advantageous in terms of operation and costs but also avoids the over-oxidation problem, thus greatly expanding the substrate scope, which is evidenced by the fact that 10 out of 21 glycosyl carboxylic acids synthesized are undocumented. With differently O5-protected furanosyl acids in hand, we demonstrate that an electron-rich protecting group is beneficial for the decarboxylative arylation of furanosyl carboxylic acids. This represents a rare example of protecting groups affecting the reaction efficiency in radical C-glycosylation. As C-vinyl glycosides can be prepared stereoselectively and the oxidative step is stereoretentive, the approach provides an effective means to access 1,2-trans or 1,2-cis glycosyl acids, which would be a valuable alternative to the cyanide-based synthesis of glycosyl carboxylic acids.
Assuntos
Ácidos Carboxílicos , Glicosídeos , Glicosilação , Estresse Oxidativo , EstereoisomerismoRESUMO
We have identified a new reactivity of copper/diamine catalysis for the reductive ring-cleavage of isoxazoles to yield fluoroalkylated enaminones. This protocol has the advantage of using commercially available reagents, ease of setting up, broad tolerance of functionality, and is regiospecific and free of defluorination and reduction of reducible functional groups. The utility was demonstrated by a one-step, regioselective synthesis of fluoroalkylated pyrazole-based drugs such as celecoxib, deracoxib, and mavacoxib.
Assuntos
Cobre , Isoxazóis , Catálise , Celecoxib , Pirazóis , SulfonamidasRESUMO
A facile oxidative heterocyclization of commercially available amines and tert-butyl nitrite with alkynes or alkenes leading to isoxazoles or isoxazolines is described. The unprecedented strategy of the oxidation of an amine directly to a nitrile oxide was used in this cyclization process. This reaction is highly efficient, regiospecific, operationally simple, mild, and tolerant of a variety of functional groups. Control experiments support a nitrile oxide intermediate mechanism for this novel class of oxidative cyclization reactions. Moreover, synthetic applications toward bioactive molecular skeletons and the late-stage modification of drugs were realized.
RESUMO
Stereoselectively-fluorinated analogs of pipecolic acid have been investigated through a combined theoretical and experimental approach. Three of the four possible diastereoisomers of 4,5-difluoropipecolic acid were successfully synthesized via deoxyfluorination chemistry, navigating a complex reaction network that included neighboring group participation, rearrangement, and elimination pathways. A DFT-based conformational study, supported by NMR J-based analysis, revealed that the different diastereoisomers of 4,5-difluoropipecolic acid preferentially adopt different puckers of the six-membered ring. These findings could have future relevance for the conformational control of biologically active peptides.
Assuntos
Ácidos PipecólicosRESUMO
C-Glycosylation involving glycosyl radical intermediates is a particularly effective approach to access C-glycosides, which are core units of a great number of natural products, bioactive compounds and marketed drugs. In this review, we summarize the progress of glycosyl radical-based C-glycoside synthesis between 1999-2020, focusing on the stereoselectivity and recently developed methodologies such as α-alkoxyacyl telluride-related, photo-mediated and transition-metal catalysed reactions. Metal-mediated reductive cross coupling is also covered due to its close relationship with the latter approaches. To introduce several strategies for achieving uncommon ß-stereoselective C-glycosylation, we also briefly described organotin-based methods.
Assuntos
Glucose/química , Glicosídeos/síntese química , Configuração de Carboidratos , Ácidos Carboxílicos/química , Catálise , Glicosilação , Oxirredução , Processos Fotoquímicos , Estereoisomerismo , Elementos de Transição/química , Ácidos Urônicos/químicaRESUMO
We have realized the first Ullmann type coupling reaction of tri(di)fluoroethylamine with (hetero)aromatic bromides, employing 5-20 mol% Cu2O and an oxalamide ligand [N-(2,4,6-trimethoxyphenyl)acetamide]. This efficient and practical method has the following features: (i) avoids the use of an expensive catalyst; (ii) does not require anhydrous solvent and strict air extrusion; (iii) uses bench stable and inexpensive (hetero)aromatic bromides; (iv) is suitable for the synthesis of fluoroalkylated hetero-aromatic substrates; (v) is suitable for gram-scale synthesis. This work also shows the "negative fluorine effect" for the alkylamines in the copper catalysed coupling reactions.
RESUMO
Stereoselective fluorination is investigated as a method for modulating the properties of a cyclic RGD-containing tetrapeptide. Three key outcomes of fluorination are assessed: (i) the effect on peptide cyclisation efficiency; (ii) the ability to fine-tune the molecular conformation; and (iii) the effect on the cyclic peptides' biological activity. Fluorination is found to exert pronounced effects against all three criteria.
RESUMO
An oxidative coupling reaction of fluoroalkylamines with arylboronic acids has been achieved for the first time. Fluorine has profound influence on the reactivity and fluoroalkylated amines have the following reactivity trend: difluoroethylamine > trifluoroethylamine > pentafluoropropylamine ≈ heptafluorobutylamine.
RESUMO
The transformation of hydroximoyl fluorides to nitrile oxides for [3 + 2]-cycloaddition with alkynes has been achieved for the first time. The hydroximoyl fluorides used in this work appeared to be not stable, which was proved by a series of experiments. A DFT calculation was performed to better understand the properties of hydroximoyl fluorides. Although not stable, the hydroximoyl fluorides could be successfully converted to the corresponding nitrile oxides for in situ [3 + 2]-cycloaddition with alkynes to yield the isoxazoles. Furthermore, it was feasible to conduct [3 + 2]-cycloaddition reaction without purification after the synthesis of hydroximoyl fluorides from gem-difluoroalkenes. By investigating a class of interesting yet previously rarely explored fluorinated compounds, this work sheds new light on the stability and reactivity of a C-F bond on a C[double bond, length as m-dash]N double bond.
RESUMO
Backbone-extended amino acids have a variety of potential applications in peptide and protein science, particularly if the geometry of the amino acid is controllable. Here we describe the synthesis of δ-amino acids that contain three vicinal C-F bonds positioned along the backbone. The ultimately successful synthetic approach emerged through the investigation of several methods based on both electrophilic and nucleophilic fluorination chemistry. We show that different diastereoisomers of this fluorinated δ-amino acid adopt distinct conformations in solution, suggesting that these molecules might have value as shape-controlled building blocks for future applications in peptide science.
RESUMO
Utilizing molecular conformation as a controlling factor, epoxide-containing 2-aryl-piperidines can be ring-opened with the reagent combination of tetrabutylammonium fluoride (TBAF) and potassium bifluoride (KHF2) in a regioselective and divergent fashion. Four different types of hydroxylated fluoro-piperidines, valuable building blocks in drug development, were readily synthesized using this method. The basic nature of the reagent combination allowed a one-pot deprotection/ring opening process, which increased the efficacy of this transformation.
RESUMO
New methods for enhancing the efficiency of peptide cyclization, and for fine-tuning the conformations of cyclic peptides, are valuable from a drug development perspective. Herein stereoselective fluorination is investigated as a new strategy for achieving these goals. Four vicinal difluorinated analogues of the natural cyclic heptapeptide unguisinâ A have been efficiently synthesized. The analogues are found to adopt dramatically different secondary structures, controlled by the fluorine stereochemistry.
Assuntos
Halogenação/genética , Peptídeos Cíclicos/química , Peptídeos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , EstereoisomerismoRESUMO
N-Glycosylated heterocycles play important roles in biological systems and drug development. The synthesis of these compounds heavily relies on ionic N-glycosylation, which is usually constrained by factors such as labile glycosyl donors, precious metal catalysts, and stringent conditions. Herein, we report a dehydroxylative radical method for synthesizing N-glycosides by leveraging copper metallaphotoredox catalysis, in which stable and readily available 1-hydroxy carbohydrates are activated for direct N-glycosylation. Our method employs inexpensive photo- and copper- catalysts and can tolerate some extent of water. The reaction exhibits a broad substrate scope, encompassing 76 examples, and demonstrates high stereoselectivity, favoring 1,2-trans selectivity for furanoses and α-selectivity for pyranoses. It also exhibits high site-selectivity for substrates containing multiple N-atoms. The synthetic utility is showcased through the late-stage functionalization of bioactive compounds and pharmaceuticals like Olaparib, Axitinib, and Metaxalone. Mechanistic studies prove the presence of glycosyl radicals and the importance of copper metallaphotoredox catalysis.
RESUMO
We report herein a deoxygenative radical multicomponent reaction involving alcohols, aryl alkenes, and cyanopyridine under photoredox conditions. This method is photoredox-neutral, suitable for late-stage modification, and compatible with a wide array of alcohols as alkyl radical sources, including primary, secondary, and tertiary alcohols. This reaction comprises a radical relay mechanism encompassing the Giese addition of aryl alkenes by alkyl radicals, followed by the decyanative pyridination of benzyl radicals.
RESUMO
Inspired by intriguing color changeable ability of natural animals, the design and fabrication of artificial mechanochromic materials capable of changing colors upon stretching or pressing have attracted intense scientific interest. Liquid crystal (LC) is a self-organized soft matter with anisotropic molecular alignment. Due to the sensitivity to various external stimulations, LC has been considered as an emerging and appealing responsive building block to construct intelligent materials and advanced devices. Recently, mechanochromic LC materials have becoming a hot topic in multifields from flexible artificial skins to visualized sensors and smart biomimetic devices. In this review, the recent progress of mechanochromic LCs is comprehensively summarized. Firstly, the mechanism and functionalities of mechanochromic LC is introduced, followed by preparation of various functional materials based on mechanochromic LCs. Then the applications of mechanochromic LCs are provided. Finally, the conclusion and outlooks of this field is given. This overview is hoped to provide inspiration in fabrication of advanced functional soft materials for scientists and engineers from multidisciplines including materials science, elastomers, chemistry, and physical science.
RESUMO
Chiral hydrazone photoswitch features are its high thermal stability and negative photochromy, making it desirable in the fabrication of thermally stable optical device. However, chiral hydrazones capable of reversibly inversing chirality is scarcely reported. Herein, a series of new chiral hydrazone switches, HI-1, HI-2 and HI-3, were designed and synthesized. Due to the photoinduced configuration changes, the newly synthesized hydrazone photoswitch presents a surprising chirality inversion upon light stimulation. Photoisomerization of light-driven hydrazone switch molecules was investigated by nuclear magnetic resonance (NMR) spectra and Raman spectroscopy. The effect of the intramolecular hydrogen bond on photoresponsiveness was analyzed. By incorporating the photoswitch into a liquid crystal (LC) host, light-driven cholesteric liquid crystals (CLCs) with handedness invertibility, a feasible photonic bandgap tunability, and superior thermal stability were achieved. In addition, according to the optical-driven thermal stability of the hydrazone switches, the fine regulation of light-driven CLC materials with multistage photo stationary states was realized, and the application of CLC materials in erasable and rewritable display panels was also demonstrated.
RESUMO
Pochonicine, the first naturally occurring polyhydroxylated pyrrolizidine containing an acetamidomethyl group, which was isolated from Pochonia suchlasporia var. suchlasporia TAMA 87, together with its enantiomer and their C-1 and/or C-3 epimers, have been synthesized from the sugar-derived cyclic nitrones 9D and 9L, respectively. An in-depth NMR study showed that both the (1)H and (13)C NMR spectra of the synthetic pochonicines (1D and 1L) matched very well with those of natural pochonicine in D2O, which unequivocally determined the relative configuration of the natural product as 1D or 1L. In addition, comparison of the optical rotations of the synthetic pochonicines and that of the natural product, but more convincingly their glycosidase inhibition profiles, confirmed the absolute configuration of natural pochonicine as 1R,3S,5R,6R,7S,7aR. Thereby, the structure of natural pochonicine was unequivocally determined as (+)-(1R,3S,5R,6R,7S,7aR)-pochonicine (1D). Glycosidase inhibition experiments showed that natural pochonicine 1D and its epimers 2D, 3D, and 4D all are powerful inhibitors of hexosaminidases (five ß-N-acetylglucosaminidases and two ß-N-acetylgalactosaminidases) while their enantiomers 1L, 2L, 3L, and 4L are much weaker inhibitors of the same enzymes. (-)-3-epi-Pochonicine (2L) was found to be a potent and selective inhibitor of α-l-rhamnosidase. None of the compounds showed any inhibition of α-GalNAcase.
Assuntos
Inibidores Enzimáticos/síntese química , Alcaloides de Pirrolizidina/síntese química , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/isolamento & purificação , Alcaloides de Pirrolizidina/farmacologia , EstereoisomerismoRESUMO
A general and efficient method has been developed for the synthesis of sugar-derived azepane nitrones starting from aldohexoses, with an intramolecular condensation of aldehyde and hydroxylamine as the key step. Through this strategy, each aldohexose produced a pair of azepane nitrones, which are precursors of various azepane iminosugars.