Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 120: 110317, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207447

RESUMO

Membranous nephropathy (MN) is one of the most common causes of non-diabetic nephrotic syndrome in adults. About 80% of cases are renal limited (primary MN) and 20% are associated with other systemic diseases or exposures (secondary MN). Autoimmune reaction is the main pathogenic factor of MN, and the discovery of autoantigens including the phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A has led to new insights into the pathogenesis, they can induce humoral immune responses led by IgG4 makes them suitable for the diagnosis and monitoring of MN. In addition, complement activation, genetic susceptibility genes and environmental pollution are also involved in MN immune response. In clinical practice, due to the spontaneous remission of MN, the combination of supportive therapy and pharmacological treatment is widely used. Immunosuppressive drugs are the cornerstone of MN treatment, and the dangers and benefits of this approach vary from person to person. In summary, this review provides a more comprehensive review of the immune pathogenesis, interventions and unresolved issues of MN in the hope of providing some new ideas for clinical and scientific researchers in the treatment of MN.


Assuntos
Glomerulonefrite Membranosa , Síndrome Nefrótica , Adulto , Humanos , Glomerulonefrite Membranosa/tratamento farmacológico , Trombospondinas/metabolismo , Receptores da Fosfolipase A2/metabolismo , Rim/patologia , Síndrome Nefrótica/complicações , Autoanticorpos
2.
Phytomedicine ; 114: 154763, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001295

RESUMO

BACKGROUND: Membranous nephropathy (MN) is one of the cardinal causes of nephrotic syndrome in adults, but an adequate treatment regimen is lacking. PURPOSE: We assessed the effect of Moshen granule (MSG) on patients with MN and cationic bovine serum albumin (CBSA)-induced rats. We further identified the bioactive components of MSG and revealed the underlying molecular mechanism of its renoprotective effects. METHODS: We determined the effect of MSG on patients with MN and CBSA-induced rats and its components on podocyte injury in zymosan-activated serum (ZAS)-elicited podocytes and revealed their regulatory mechanism on the Wnt/ß-catenin/renin-angiotensin system (RAS) signalling axis. RESULTS: MSG treatment improved renal function and reduced proteinuria in MN patients and significantly reduced proteinuria and preserved the protein expression of podocin, nephrin, podocalyxin and synaptopodin in CBSA-induced MN rats. Mechanistically, MSG treatment significantly inhibited the protein expression of angiotensinogen, angiotensin converting enzyme and angiotensin II type 1 receptor, which was accompanied by inhibition of the protein expression of Wnt1 and ß-catenin and its downstream gene products, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in CBSA-induced MN rats. We further identified 81 compounds, including astragaloside IV (AGS), calycosin, barleriside A and geniposidic acid, that preserve the podocyte-specific protein expression in ZAS-induced podocytes. Among these four compounds, AGS exhibited the strongest inhibitory effects on podocyte protein expression. AGS treatment significantly inhibited the protein expression of RAS components and Wnt1 and ß-catenin and its downstream gene products in ZAS-induced podocytes. In contrast, the inhibitory effect of AGS on podocyte-specific proteins, ß-catenin downstream gene products and RAS components was partially abolished in ZAS-induced podocytes treated with ICG-001 and ß-catenin siRNA. CONCLUSION: This study first demonstrates that AGS mitigates podocyte injury by inhibiting the activation of RAS signalling via the Wnt1/ß-catenin pathway by both pharmacological and genetic methods. Therefore, AGS might be considered a new ß-catenin inhibitor that inhibits the Wnt1/ß-catenin pathway to retard MN in patients.


Assuntos
Glomerulonefrite Membranosa , Sistema Renina-Angiotensina , Ratos , Animais , beta Catenina/metabolismo , Proteinúria , Via de Sinalização Wnt
3.
Ageing Res Rev ; 79: 101662, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688331

RESUMO

Aging promotes chronic inflammation, which contributes to fibrosis and decreases organ function. Fibrosis, the excessive synthesis and deposition of extracellular matrix components, is the main cause of most chronic diseases including aging-related organ failure. Organ fibrosis in the heart, liver, and kidneys is the final manifestation of many chronic diseases. The aryl hydrocarbon receptor (AHR) is a cytoplasmic receptor and highly conserved transcription factor that is activated by a variety of small-molecule ligands to affect a wide array of tissue homeostasis functions. In recent years, mounting evidence has revealed that AHR plays an important role in multi-organ fibrosis initiation, progression, and therapy. In this review, we summarise the relationship between AHR and the pathogenesis of aging-related tissue fibrosis, and further discuss how AHR modulates tissue fibrosis by regulating transforming growth factor-ß signalling, immune response, and mitochondrial function, which may offer novel targets for the prevention and treatment of this condition.


Assuntos
Envelhecimento , Receptores de Hidrocarboneto Arílico , Envelhecimento/patologia , Fibrose/patologia , Humanos , Rim/patologia , Fígado/patologia
4.
Front Pharmacol ; 12: 719880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483931

RESUMO

The Wnt/ß-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and ß-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/ß-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/ß-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/ß-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule ß-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/ß-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/ß-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA