Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991264

RESUMO

The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.


Assuntos
Conectoma , Lobo Parietal , Humanos , Imageamento por Ressonância Magnética , Lobo Frontal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Temporal
2.
Cereb Cortex ; 33(7): 3319-3349, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35834308

RESUMO

The effective connectivity between 55 visual cortical regions and 360 cortical regions was measured in 171 HCP participants using the HCP-MMP atlas, and complemented with functional connectivity and diffusion tractography. A Ventrolateral Visual "What" Stream for object and face recognition projects hierarchically to the inferior temporal visual cortex, which projects to the orbitofrontal cortex for reward value and emotion, and to the hippocampal memory system. A Ventromedial Visual "Where" Stream for scene representations connects to the parahippocampal gyrus and hippocampus. An Inferior STS (superior temporal sulcus) cortex Semantic Stream receives from the Ventrolateral Visual Stream, from visual inferior parietal PGi, and from the ventromedial-prefrontal reward system and connects to language systems. A Dorsal Visual Stream connects via V2 and V3A to MT+ Complex regions (including MT and MST), which connect to intraparietal regions (including LIP, VIP and MIP) involved in visual motion and actions in space. It performs coordinate transforms for idiothetic update of Ventromedial Stream scene representations. A Superior STS cortex Semantic Stream receives visual inputs from the Inferior STS Visual Stream, PGi, and STV, and auditory inputs from A5, is activated by face expression, motion and vocalization, and is important in social behaviour, and connects to language systems.


Assuntos
Córtex Visual , Vias Visuais , Humanos , Vias Visuais/diagnóstico por imagem , Lobo Temporal , Hipocampo , Córtex Pré-Frontal , Lobo Parietal , Mapeamento Encefálico
3.
Cereb Cortex ; 33(6): 3142-3170, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834902

RESUMO

The effective connectivity between 21 regions in the human posterior parietal cortex, and 360 cortical regions was measured in 171 Human Connectome Project (HCP) participants using the HCP atlas, and complemented with functional connectivity and diffusion tractography. Intraparietal areas LIP, VIP, MIP, and AIP have connectivity from early cortical visual regions, and to visuomotor regions such as the frontal eye fields, consistent with functions in eye saccades and tracking. Five superior parietal area 7 regions receive from similar areas and from the intraparietal areas, but also receive somatosensory inputs and connect with premotor areas including area 6, consistent with functions in performing actions to reach for, grasp, and manipulate objects. In the anterior inferior parietal cortex, PFop, PFt, and PFcm are mainly somatosensory, and PF in addition receives visuo-motor and visual object information, and is implicated in multimodal shape and body image representations. In the posterior inferior parietal cortex, PFm and PGs combine visuo-motor, visual object, and reward input and connect with the hippocampal system. PGi in addition provides a route to motion-related superior temporal sulcus regions involved in social interactions. PGp has connectivity with intraparietal regions involved in coordinate transforms and may be involved in idiothetic update of hippocampal visual scene representations.


Assuntos
Conectoma , Córtex Motor , Humanos , Lobo Parietal/diagnóstico por imagem , Lobo Temporal , Córtex Somatossensorial
4.
Cereb Cortex ; 33(10): 6207-6227, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573464

RESUMO

To understand auditory cortical processing, the effective connectivity between 15 auditory cortical regions and 360 cortical regions was measured in 171 Human Connectome Project participants, and complemented with functional connectivity and diffusion tractography. 1. A hierarchy of auditory cortical processing was identified from Core regions (including A1) to Belt regions LBelt, MBelt, and 52; then to PBelt; and then to HCP A4. 2. A4 has connectivity to anterior temporal lobe TA2, and to HCP A5, which connects to dorsal-bank superior temporal sulcus (STS) regions STGa, STSda, and STSdp. These STS regions also receive visual inputs about moving faces and objects, which are combined with auditory information to help implement multimodal object identification, such as who is speaking, and what is being said. Consistent with this being a "what" ventral auditory stream, these STS regions then have effective connectivity to TPOJ1, STV, PSL, TGv, TGd, and PGi, which are language-related semantic regions connecting to Broca's area, especially BA45. 3. A4 and A5 also have effective connectivity to MT and MST, which connect to superior parietal regions forming a dorsal auditory "where" stream involved in actions in space. Connections of PBelt, A4, and A5 with BA44 may form a language-related dorsal stream.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/diagnóstico por imagem , Lobo Temporal , Lobo Parietal , Semântica , Idioma
5.
Cereb Cortex ; 33(8): 4939-4963, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227217

RESUMO

Effective connectivity, functional connectivity, and tractography were measured between 57 cortical frontal and somatosensory regions and the 360 cortical regions in the Human Connectome Project (HCP) multimodal parcellation atlas for 171 HCP participants. A ventral somatosensory stream connects from 3b and 3a via 1 and 2 and then via opercular and frontal opercular regions to the insula, which then connects to inferior parietal PF regions. This stream is implicated in "what"-related somatosensory processing of objects and of the body and in combining with visual inputs in PF. A dorsal "action" somatosensory stream connects from 3b and 3a via 1 and 2 to parietal area 5 and then 7. Inferior prefrontal regions have connectivity with the inferior temporal visual cortex and orbitofrontal cortex, are implicated in working memory for "what" processing streams, and provide connectivity to language systems, including 44, 45, 47l, TPOJ1, and superior temporal visual area. The dorsolateral prefrontal cortex regions that include area 46 have connectivity with parietal area 7 and somatosensory inferior parietal regions and are implicated in working memory for actions and planning. The dorsal prefrontal regions, including 8Ad and 8Av, have connectivity with visual regions of the inferior parietal cortex, including PGs and PGi, and are implicated in visual and auditory top-down attention.


Assuntos
Córtex Motor , Humanos , Imageamento por Ressonância Magnética , Córtex Somatossensorial/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal
6.
Hum Brain Mapp ; 44(2): 629-655, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178249

RESUMO

The human posterior cingulate, retrosplenial, and medial parietal cortex are involved in memory and navigation. The functional anatomy underlying these cognitive functions was investigated by measuring the effective connectivity of these Posterior Cingulate Division (PCD) regions in the Human Connectome Project-MMP1 atlas in 171 HCP participants, and complemented with functional connectivity and diffusion tractography. First, the postero-ventral parts of the PCD (31pd, 31pv, 7m, d23ab, and v23ab) have effective connectivity with the temporal pole, inferior temporal visual cortex, cortex in the superior temporal sulcus implicated in auditory and semantic processing, with the reward-related vmPFC and pregenual anterior cingulate cortex, with the inferior parietal cortex, and with the hippocampal system. This connectivity implicates it in hippocampal episodic memory, providing routes for "what," reward and semantic schema-related information to access the hippocampus. Second, the antero-dorsal parts of the PCD (especially 31a and 23d, PCV, and also RSC) have connectivity with early visual cortical areas including those that represent spatial scenes, with the superior parietal cortex, with the pregenual anterior cingulate cortex, and with the hippocampal system. This connectivity implicates it in the "where" component for hippocampal episodic memory and for spatial navigation. The dorsal-transitional-visual (DVT) and ProStriate regions where the retrosplenial scene area is located have connectivity from early visual cortical areas to the parahippocampal scene area, providing a ventromedial route for spatial scene information to reach the hippocampus. These connectivities provide important routes for "what," reward, and "where" scene-related information for human hippocampal episodic memory and navigation. The midcingulate cortex provides a route from the anterior dorsal parts of the PCD and the supracallosal part of the anterior cingulate cortex to premotor regions.


Assuntos
Conectoma , Giro do Cíngulo , Humanos , Giro do Cíngulo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/anatomia & histologia , Córtex Cerebral , Hipocampo/diagnóstico por imagem
7.
Hum Brain Mapp ; 44(7): 2669-2683, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807461

RESUMO

The preprocessing of diffusion magnetic resonance imaging (dMRI) data involve numerous steps, including the corrections for head motion, susceptibility distortion, low signal-to-noise ratio, and signal drifting. Researchers or clinical practitioners often need to configure different preprocessing steps depending on disparate image acquisition schemes, which increases the technical threshold for dMRI analysis for nonexpert users. This could cause disparities in data processing approaches and thus hinder the comparability between studies. To make the dMRI data processing steps transparent and adapt to various dMRI acquisition schemes for researchers, we propose a semi-automated pipeline tool for dMRI named integrated diffusion image operator or iDIO. This pipeline integrates features from a wide range of advanced dMRI software tools and targets at providing a one-click solution for dMRI data analysis, via adaptive configuration for a set of suggested processing steps based on the image header of the input data. Additionally, the pipeline provides options for post-processing, such as estimation of diffusion tensor metrics and whole-brain tractography-based connectomes reconstruction using common brain atlases. The iDIO pipeline also outputs an easy-to-interpret quality control report to facilitate users to assess the data quality. To keep the transparency of data processing, the execution log and all the intermediate images produced in the iDIO's workflow are accessible. The goal of iDIO is to reduce the barriers for clinical or nonspecialist users to adopt the state-of-art dMRI processing steps.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo , Imageamento por Ressonância Magnética , Software
8.
Hum Brain Mapp ; 44(5): 2099-2108, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36583389

RESUMO

White matter hyperintensity (WMH) is associated with vascular hemodynamic alterations and reflects white matter injury. To date, the sex difference of tract-specific WMH and the relationship between high blood pressure (BP) and tract-specific WMH remain unclear. We recruited 515 subjects from the Shanghai Changfeng study (range 53-89 years, mean age 67.33 years). Systolic and diastolic blood pressure (SBP and DBP) were collected and used to calculate pulse pressure (PP). Magnetic resonance T1 and T2 FLAIR images were acquired to measure WMH and calculate WMH index. The ANCOVA test was performed to test the difference between sexes, and the linear regression model was used to examine the associations between BP and WMH index. Men showed higher WMH index than women in all white matter tracts (p < .001, respectively) except for the bilateral superior longitudinal fasciculus (SLF) and its left temporal part (tSLF). High SBP and PP was associated with a lower WMH index on the left corticospinal tract (CST), SLF, tSLF and right cingulum in hippocampus (p ≤ .001, respectively) in women, while high DBP was associated with a higher WMH index on the bilateral CST (left p < .001; right p = .001), left inferior longitudinal fasciculus (p < .001) and inferior fronto-occipital fasciculus (p = .002) in men. Men tend to have more WMH compared to women. A high SBP/PP relates to a lower WMH burden in women. This suggests that women could benefit from higher blood pressure in older age.


Assuntos
Hipertensão , Caracteres Sexuais , Substância Branca , Idoso , Feminino , Humanos , Masculino , Envelhecimento/fisiologia , China , Hipertensão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
9.
Mol Psychiatry ; 27(3): 1384-1393, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35338312

RESUMO

Patients with major depressive disorder (MDD) exhibit concurrent deficits in both sensory and higher-order cognitive processing. Connectome studies have suggested a principal primary-to-transmodal gradient in functional brain networks, supporting the spectrum from sensation to cognition. However, whether this gradient structure is disrupted in patients with MDD and how this disruption associates with gene expression profiles and treatment outcome remain unknown. Using a large cohort of resting-state fMRI data from 2227 participants (1148 MDD patients and 1079 healthy controls) recruited at nine sites, we investigated MDD-related alterations in the principal connectome gradient. We further used Neurosynth, postmortem gene expression, and an 8-week antidepressant treatment (20 MDD patients) data to assess the meta-analytic cognitive functions, transcriptional profiles, and treatment outcomes related to MDD gradient alterations, respectively. Relative to the controls, MDD patients exhibited global topographic alterations in the principal primary-to-transmodal gradient, including reduced explanation ratio, gradient range, and gradient variation (Cohen's d = 0.16-0.21), and focal alterations mainly in the primary and transmodal systems (d = 0.18-0.25). These gradient alterations were significantly correlated with meta-analytic terms involving sensory processing and higher-order cognition. The transcriptional profiles explained 53.9% variance of the altered gradient pattern, with the most correlated genes enriched in transsynaptic signaling and calcium ion binding. The baseline gradient maps of patients significantly predicted symptomatic improvement after treatment. These results highlight the connectome gradient dysfunction in MDD and its linkage with gene expression profiles and clinical management, providing insight into the neurobiological underpinnings and potential biomarkers for treatment evaluation in this disorder.


Assuntos
Conectoma , Transtorno Depressivo Maior , Encéfalo , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Transcriptoma/genética , Resultado do Tratamento
10.
Cereb Cortex ; 32(17): 3706-3725, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35034120

RESUMO

Effective connectivity measurements in the human hippocampal memory system based on the resting-state blood oxygenation-level dependent signal were made in 172 participants in the Human Connectome Project to reveal the directionality and strength of the connectivity. A ventral "what" hippocampal stream involves the temporal lobe cortex, perirhinal and parahippocampal TF cortex, and entorhinal cortex. A dorsal "where" hippocampal stream connects parietal cortex with posterior and retrosplenial cingulate cortex, and with parahippocampal TH cortex, which, in turn, project to the presubiculum, which connects to the hippocampus. A third stream involves the orbitofrontal and ventromedial-prefrontal cortex with effective connectivity with the hippocampal, entorhinal, and perirhinal cortex. There is generally stronger forward connectivity to the hippocampus than backward. Thus separate "what," "where," and "reward" streams can converge in the hippocampus, from which back projections return to the sources. However, unlike the simple dual stream hippocampal model, there is a third stream related to reward value; there is some cross-connectivity between these systems before the hippocampus is reached; and the hippocampus has some effective connectivity with earlier stages of processing than the entorhinal cortex and presubiculum. These findings complement diffusion tractography and provide a foundation for new concepts on the operation of the human hippocampal memory system.


Assuntos
Conectoma , Hipocampo , Córtex Entorrinal , Hipocampo/diagnóstico por imagem , Humanos , Giro Para-Hipocampal , Lobo Temporal
11.
Cereb Cortex ; 33(2): 330-356, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35233615

RESUMO

The human orbitofrontal cortex, ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex are involved in reward processing and thereby in emotion but are also implicated in episodic memory. To understand these regions better, the effective connectivity between 360 cortical regions and 24 subcortical regions was measured in 172 humans from the Human Connectome Project and complemented with functional connectivity and diffusion tractography. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory, and pole cortical areas. The orbitofrontal cortex has connectivity to the pregenual anterior and posterior cingulate cortex and hippocampal system and provides for rewards to be used in memory and navigation to goals. The orbitofrontal and pregenual anterior cortex have connectivity to the supracallosal anterior cingulate cortex, which projects to midcingulate and other premotor cortical areas and provides for action-outcome learning including limb withdrawal or flight or fight to aversive and nonreward stimuli. The lateral orbitofrontal cortex has outputs to language systems in the inferior frontal gyrus. The medial orbitofrontal cortex connects to the nucleus basalis of Meynert and the pregenual cingulate to the septum, and damage to these cortical regions may contribute to memory impairments by disrupting cholinergic influences on the neocortex and hippocampus.


Assuntos
Conectoma , Córtex Motor , Humanos , Giro do Cíngulo/diagnóstico por imagem , Emoções , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética
12.
Neuroimage ; 258: 119352, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35659999

RESUMO

To advance understanding of brain networks involved in language, the effective connectivity between 26 cortical regions implicated in language by a community analysis and 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography, all using the HCP multimodal parcellation atlas. A (semantic) network (Group 1) involving inferior cortical regions of the superior temporal sulcus cortex (STS) with the adjacent inferior temporal visual cortex TE1a and temporal pole TG, and the connected parietal PGi region, has effective connectivity with inferior temporal visual cortex (TE) regions; with parietal PFm which also has visual connectivity; with posterior cingulate cortex memory-related regions; with the frontal pole, orbitofrontal cortex, and medial prefrontal cortex; with the dorsolateral prefrontal cortex; and with 44 and 45 for output regions. It is proposed that this system can build in its temporal lobe (STS and TG) and parietal parts (PGi and PGs) semantic representations of objects incorporating especially their visual and reward properties. Another (semantic) network (Group 3) involving superior regions of the superior temporal sulcus cortex and more superior temporal lobe regions including STGa, auditory A5, TPOJ1, the STV and the Peri-Sylvian Language area (PSL) has effective connectivity with auditory areas (A1, A4, A5, Pbelt); with relatively early visual areas involved in motion, e.g., MT and MST, and faces/words (FFC); with somatosensory regions (frontal opercular FOP, insula and parietal PF); with other TPOJ regions; and with the inferior frontal gyrus regions (IFJa and IFSp). It is proposed that this system builds semantic representations specialising in auditory and related facial motion information useful in theory of mind and somatosensory / body image information, with outputs directed not only to regions 44 and 45, but also to premotor 55b and midcingulate premotor cortex. Both semantic networks (Groups 1 and 3) have access to the hippocampal episodic memory system via parahippocampal TF. A third largely frontal network (Group 2) (44, 45, 47l; 55b; the Superior Frontal Language region SFL; and including temporal pole TGv) receives effective connectivity from the two semantic systems, and is implicated in syntax and speech output.


Assuntos
Conectoma , Mapeamento Encefálico , Lobo Frontal , Humanos , Idioma , Vias Neurais , Lobo Parietal , Lobo Temporal
13.
Neuroimage ; 254: 118958, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217204

RESUMO

Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , China , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos
14.
Cereb Cortex ; 31(10): 4652-4669, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34013342

RESUMO

The human hippocampus is involved in forming new memories: damage impairs memory. The dual stream model suggests that object "what" representations from ventral stream temporal cortex project to the hippocampus via the perirhinal and then lateral entorhinal cortex, and spatial "where" representations from the dorsal parietal stream via the parahippocampal gyrus and then medial entorhinal cortex. The hippocampus can then associate these inputs to form episodic memories of what happened where. Diffusion tractography was used to reveal the direct connections of hippocampal system areas in humans. This provides evidence that the human hippocampus has extensive direct cortical connections, with connections that bypass the entorhinal cortex to connect with the perirhinal and parahippocampal cortex, with the temporal pole, with the posterior and retrosplenial cingulate cortex, and even with early sensory cortical areas. The connections are less hierarchical and segregated than in the dual stream model. This provides a foundation for a conceptualization for how the hippocampal memory system connects with the cerebral cortex and operates in humans. One implication is that prehippocampal cortical areas such as the parahippocampal TF and TH subregions and perirhinal cortices may implement specialized computations that can benefit from inputs from the dorsal and ventral streams.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Adulto , Córtex Entorrinal/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Memória Episódica , Modelos Neurológicos , Giro Para-Hipocampal/fisiologia , Córtex Perirrinal , Lobo Temporal/fisiologia , Adulto Jovem
15.
Cereb Cortex ; 31(6): 3021-3033, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33471126

RESUMO

Psychological androgyny has long been associated with greater cognitive flexibility, adaptive behavior, and better mental health, but whether a similar concept can be defined using neural features remains unknown. Using the neuroimaging data from 9620 participants, we found that global functional connectivity was stronger in the male brain before middle age but became weaker after that, when compared with the female brain, after systematic testing of potentially confounding effects. We defined a brain gender continuum by estimating the likelihood of an observed functional connectivity matrix to represent a male brain. We found that participants mapped at the center of this continuum had fewer internalizing symptoms compared with those at the 2 extreme ends. These findings suggest a novel hypothesis proposing that there exists a neuroimaging concept of androgyny using the brain gender continuum, which may be associated with better mental health in a similar way to psychological androgyny.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Caracteres Sexuais , Adulto , Idoso , Encéfalo/fisiologia , Bases de Dados Factuais/tendências , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Neuroimagem/métodos , Adulto Jovem
16.
Age Ageing ; 51(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35536881

RESUMO

BACKGROUND: age-related neurovascular structural and functional impairment is a major aetiology of dementia and stroke in older people. There is no single marker representative of neurovascular biological age yet. OBJECTIVE: this study aims to develop and validate a white matter hyperintensities (WMH)-based model for characterising individuals' neurovascular biological age. METHODS: in this prospective single-site study, the WMH-based age-prediction model was constructed based on WMH volumes of 491 healthy participants (21-89 years). In the training dataset, the constructed linear-regression model with log-transformed WMH volumes showed well-balanced complexity and accuracy (root mean squared error, RMSE = 10.20 and mean absolute error, MAE = 7.76 years). This model of neurovascular age estimation was then applied to a middle-to-old aged testing dataset (n = 726, 50-92 years) as the testing dataset for external validation. RESULTS: the established age estimator also had comparable generalizability with the testing dataset (RMSE = 7.76 and MAE = 6.38 years). In the testing dataset, the WMH-predicted age difference was negatively associated with visual executive function. Individuals with older predicted-age for their chronological age had greater cardiovascular burden and cardiovascular disease risks than individuals with normal or delayed predicted age. These associations were independent of chronological age. CONCLUSIONS: our model is easy to use in clinical practice that helps to evaluate WMH severity objective to chronological age. Current findings support our WMH-based age measurement to reflect neurovascular health and have potential diagnostic and prognostic value for clinical or research purposes in age-related neurovascular disorders.


Assuntos
Substância Branca , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Função Executiva , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Prospectivos , Substância Branca/diagnóstico por imagem
17.
Neuromodulation ; 25(4): 528-537, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088736

RESUMO

BACKGROUND: Although repetitive transcranial magnetic stimulation (rTMS) has exhibited promising efficacy in treating stroke-related aphasia, changes in neuroimaging in response to this therapy remain unclear. MATERIALS AND METHODS: By using resting-state functional magnetic resonance imaging (rsfMRI), we examined brain activations associated with language recovery in patients with poststroke nonfluent aphasia during an rTMS intervention. Twenty-six stroke patients with nonfluent aphasia were recruited in this randomized double-blinded study. The patients received real (n = 13) or sham (n = 13) 1-Hz inhibitory rTMS to the right pars triangularis (PTr) for ten consecutive weekdays. They underwent rsfMRI and completed the Concise Chinese Aphasia Test (CCAT) before and after the rTMS intervention. RESULT: The fractional amplitude of low-frequency fluctuation (fALFF) was calculated to investigate spontaneous neural activity in the brain. After treatment, the language function in the experimental group was higher than that in the sham group in terms of total CCAT score (p = 0.014) and the CCAT subscores of conversation (p = 0.012), description (p = 0.006), and expression (p = 0.003). Postintervention intergroup comparisons revealed that fALFF was significantly increased in the right superior temporal gyrus, right dorsolateral prefrontal gyrus, insular cortex, and caudate nucleus. Clusters in the right thalamus exhibited suppressed fALFF. The enhanced clusters in the frontotemporal region were significantly correlated with CCAT score improvements. CONCLUSIONS: Our findings provide empirical evidence for the vital role of the right frontotemporal and subcortical regions in language recovery after rTMS interventions in patients with aphasia. Inhibitory rTMS may improve language expression by promoting involvement of the right frontotemporal region. The results can be further used to refine rTMS protocols and optimize brain stimulation treatments. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03059225.


Assuntos
Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Afasia de Broca/complicações , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Descanso , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
18.
Magn Reson Med ; 86(3): 1514-1530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960501

RESUMO

PURPOSE: Recent advances in diffusion-weighted MRI provide "restricted diffusion signal fraction" and restricting pore size estimates. Materials based on co-electrospun oriented hollow cylinders have been introduced to provide validation for such methods. This study extends this work, exploring accuracy and repeatability using an extended acquisition on a 300 mT/m gradient human MRI scanner, in substrates closely mimicking tissue, that is, non-circular cross-sections, intra-voxel fiber crossing, intra-voxel distributions of pore-sizes, and smaller pore-sizes overall. METHODS: In a single-blind experiment, diffusion-weighted data were collected from a biomimetic phantom on a 3T Connectom system using multiple gradient directions/diffusion times. Repeated scans established short-term and long-term repeatability. The total scan time (54 min) matched similar protocols used in human studies. The number of distinct fiber populations was estimated using spherical deconvolution, and median pore size estimated through the combination of CHARMED and AxCaliber3D framework. Diffusion-based estimates were compared with measurements derived from scanning electron microscopy. RESULTS: The phantom contained substrates with different orientations, fiber configurations, and pore size distributions. Irrespective of one or two populations within the voxel, the pore-size estimates (~5 µm) and orientation-estimates showed excellent agreement with the median values of pore-size derived from scanning electron microscope and phantom configuration. Measurement repeatability depended on substrate complexity, with lower values seen in samples containing crossing-fibers. Sample-level repeatability was found to be good. CONCLUSION: While no phantom mimics tissue completely, this study takes a step closer to validating diffusion microstructure measurements for use in vivo by demonstrating the ability to quantify microgeometry in relatively complex configurations.


Assuntos
Biomimética , Imagem de Difusão por Ressonância Magnética , Encéfalo , Humanos , Microscopia Eletrônica de Varredura , Imagens de Fantasmas , Método Simples-Cego
19.
Cereb Cortex ; 30(11): 5830-5843, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32548630

RESUMO

The direct connections of the orbitofrontal cortex (OFC) were traced with diffusion tractography imaging and statistical analysis in 50 humans, to help understand better its roles in emotion and its disorders. The medial OFC and ventromedial prefrontal cortex have direct connections with the pregenual and subgenual parts of the anterior cingulate cortex; all of which are reward-related areas. The lateral OFC (OFClat) and its closely connected right inferior frontal gyrus (rIFG) have direct connections with the supracallosal anterior cingulate cortex; all of which are punishment or nonreward-related areas. The OFClat and rIFG also have direct connections with the right supramarginal gyrus and inferior parietal cortex, and with some premotor cortical areas, which may provide outputs for the OFClat and rIFG. Another key finding is that the ventromedial prefrontal cortex shares with the medial OFC especially strong outputs to the nucleus accumbens and olfactory tubercle, which comprise the ventral striatum, whereas the other regions have more widespread outputs to the striatum. Direct connections of the OFC and IFG were with especially the temporal pole part of the temporal lobe. The left IFG, which includes Broca's area, has direct connections with the left angular and supramarginal gyri.


Assuntos
Vias Neurais/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Adulto , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Neuroimage ; 206: 116189, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521825

RESUMO

Following a first version AAL of the automated anatomical labeling atlas (Tzourio-Mazoyer et al., 2002), a second version (AAL2) (Rolls et al., 2015) was developed that provided an alternative parcellation of the orbitofrontal cortex following the description provided by Chiavaras, Petrides, and colleagues. We now provide a third version, AAL3, which adds a number of brain areas not previously defined, but of interest in many neuroimaging investigations. The 26 new areas in the third version are subdivision of the anterior cingulate cortex into subgenual, pregenual and supracallosal parts; subdivision of the thalamus into 15 parts; the nucleus accumbens, substantia nigra, ventral tegmental area, red nucleus, locus coeruleus, and raphe nuclei. The new atlas is available as a toolbox for SPM, and can be used with MRIcron.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador , Neuroimagem/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA