RESUMO
Macroscopic porous graphene materials composed of graphene sheets have demonstrated their advantageous aspects in diverse application areas. It is essential to maximize their excellent performances by rationally controlling the sheet arrangement and pore structure. Bulk porous graphene materials with oriented pore structure and arrangement of graphene sheets are prepared by marrying electrolyte-assisted self-assembly and shear-force-induced alignment of graphene oxide sheets, and the super elasticity and anisotropic mechanical, electrical, and thermal properties induced by this unique structure are systematically investigated. Its application in pressure sensing exhibits ultrahigh sensitivity of 313.23 kPa-1 for detecting ultralow pressure variation below 0.5 kPa, and it shows high retention rate for continuously intercepting dye molecules with a high flux of ≈18.7 L m-2 h-1 bar-1 and a dynamic removal rate of 510 mg m-2 h-1 .
RESUMO
A new conductive carbon hybrid combining both reduced graphene nanoscrolls and carbon nanotubes (rGNSs-CNTs) is prepared, and used to host Fe3O4 nanoparticles through an in situ synthesis method. As an anode material for LIBs, the obtained Fe3O4@rGNSs-CNTs shows good electrochemical performance. At a current density of 0.1 A g-1, the anode material shows a high reversible capacity of 1232.9 mAh g-1 after 100 cycles. Even at a current density of 1 A g-1, it still achieves a high reversible capacity of 812.3 mAh g-1 after 200 cycles. Comparing with bare Fe3O4 and Fe3O4/rGO composite anode materials without nanoscroll structure, Fe3O4@rGNSs-CNTs shows much better rate capability with a reversible capacity of 605.0 and 500.0 mAh g-1 at 3 and 5 A g-1, respectively. The excellent electrochemical performance of the Fe3O4@rGNSs-CNTs anode material can be ascribed to the hybrid structure of rGNSs-CNTs, and their strong interaction with Fe3O4 nanoparticles, which on one hand provides more pathways for lithium ions and electrons, on the other hand effectively relieves the volume change of Fe3O4 during the charge-discharge process.
RESUMO
Layered transition metal oxides (TMOs), like the P2-type Na2/3Ni1/3Mn2/3O2, are promising cathodes for sodium-ion batteries but suffer rapid capacity degradation at high voltages. Surface engineering is a popular strategy to modify the high-voltage stability of cathode materials, yet its efficacy for sodium layered TMOs remains elusive, especially given the deleterious layer-gliding phase transition during high-voltage operation. Here, we examined the effect of surface coatings on the high-voltage cycling stability of Na2/3Ni1/3Mn2/3O2, finding that they suppress high-voltage polarization but do not significantly affect capacity retention, which is mainly impacted by bulk structure degradation. Hence, surface engineering must be complemented with bulk structure modification to stabilize high-voltage cycling.
RESUMO
LiNi0.8Mn0.1Co0.1O2 (NMC811) is a popular cathode material for Li-ion batteries, yet degradation and side reactions at the cathode-electrolyte interface pose significant challenges to their long-term cycling stability. Coating LiNixMnyCo1-x-yO2 (NMC) with refractory materials has been widely used to improve the stability of the cathode-electrolyte interface, but mixed results have been reported for Al2O3 coatings of the Ni-rich NMC811 materials. To elucidate the role and effect of the Al2O3 coating, we have coated commercial-grade NMC811 electrodes with Al2O3 by the atomic layer deposition (ALD) technique. Through a systematic investigation of the long-term cycling stability at different upper cutoff voltages, the stability against ambient storage, the rate capability, and the charger transfer kinetics, our results show no significant differences between the Al2O3-coated and the bare (uncoated) electrodes. This highlights the contentious role of Al2O3 coating on Ni-rich NMC cathodes and calls into question the benefits of coating on commercial-grade electrodes.
RESUMO
Nanosheet-constructing porous CeO2 microspheres with silver nanoparticles anchored on the surface were developed as a highly efficient oxygen reduction reaction (ORR) catalyst. The aluminum-air batteries applying Ag-CeO2 as the ORR catalyst exhibit a high output power density and low degradation rate of 345 mW cm-2 and 2.6% per 100 h, respectively.