Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell ; 83(14): 2493-2508.e5, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343553

RESUMO

Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.


Assuntos
Proteínas Associadas a CRISPR , DNA , DNA/genética , DNA de Cadeia Simples/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo
2.
Nat Rev Mol Cell Biol ; 18(3): 141-158, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28053344

RESUMO

The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.


Assuntos
Cromatina/fisiologia , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Animais , Replicação do DNA , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Nucleossomos/química , Nucleossomos/metabolismo
3.
Mol Cell ; 81(12): 2533-2548.e9, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33857403

RESUMO

From biosynthesis to assembly into nucleosomes, histones are handed through a cascade of histone chaperones, which shield histones from non-specific interactions. Whether mechanisms exist to safeguard the histone fold during histone chaperone handover events or to release trapped intermediates is unclear. Using structure-guided and functional proteomics, we identify and characterize a histone chaperone function of DNAJC9, a heat shock co-chaperone that promotes HSP70-mediated catalysis. We elucidate the structure of DNAJC9, in a histone H3-H4 co-chaperone complex with MCM2, revealing how this dual histone and heat shock co-chaperone binds histone substrates. We show that DNAJC9 recruits HSP70-type enzymes via its J domain to fold histone H3-H4 substrates: upstream in the histone supply chain, during replication- and transcription-coupled nucleosome assembly, and to clean up spurious interactions. With its dual functionality, DNAJC9 integrates ATP-resourced protein folding into the histone supply pathway to resolve aberrant intermediates throughout the dynamic lives of histones.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas de Histonas/metabolismo , Linhagem Celular Tumoral , Cromatina , Montagem e Desmontagem da Cromatina , Replicação do DNA , Proteínas de Choque Térmico HSP40/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Chaperonas de Histonas/fisiologia , Histonas/metabolismo , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Nucleossomos , Ligação Proteica , Proteômica/métodos
4.
Nature ; 594(7864): 560-565, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040253

RESUMO

Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Microtúbulos/química , Infarto do Miocárdio/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Tirosina/química , Proteínas Angiogênicas , Animais , Carboxipeptidases , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Miócitos Cardíacos , Volume Sistólico , Função Ventricular Esquerda
5.
Proc Natl Acad Sci U S A ; 119(49): e2209256119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454752

RESUMO

Auxin inactivation is critical for plant growth and development. To develop plant growth regulators functioning in auxin inactivation pathway, we performed a phenotype-based chemical screen in Arabidopsis and identified a chemical, nalacin, that partially mimicked the effects of auxin. Genetic, pharmacological, and biochemical approaches demonstrated that nalacin exerts its auxin-like activities by inhibiting indole-3-acetic acid (IAA) conjugation that is mediated by Gretchen Hagen 3 (GH3) acyl acid amido synthetases. The crystal structure of Arabidopsis GH3.6 in complex with D4 (a derivative of nalacin) together with docking simulation analysis revealed the molecular basis of the inhibition of group II GH3 by nalacin. Sequence alignment analysis indicated broad bioactivities of nalacin and D4 as inhibitors of GH3s in vascular plants, which were confirmed, at least, in tomato and rice. In summary, our work identifies nalacin as a potent inhibitor of IAA conjugation mediated by group II GH3 that plays versatile roles in hormone-regulated plant development and has potential applications in both basic research and agriculture.


Assuntos
Arabidopsis , Ligases , Arabidopsis/genética , Ácidos Indolacéticos/farmacologia , Fenômenos Químicos , Reguladores de Crescimento de Plantas/farmacologia , Testes Genéticos
6.
Nucleic Acids Res ; 50(9): 5349-5368, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489058

RESUMO

Histone chaperones regulate all aspects of histone metabolism. NASP is a major histone chaperone for H3-H4 dimers critical for preventing histone degradation. Here, we identify two distinct histone binding modes of NASP and reveal how they cooperate to ensure histone H3-H4 supply. We determine the structures of a sNASP dimer, a complex of a sNASP dimer with two H3 α3 peptides, and the sNASP-H3-H4-ASF1b co-chaperone complex. This captures distinct functionalities of NASP and identifies two distinct binding modes involving the H3 α3 helix and the H3 αN region, respectively. Functional studies demonstrate the H3 αN-interaction represents the major binding mode of NASP in cells and shielding of the H3 αN region by NASP is essential in maintaining the H3-H4 histone soluble pool. In conclusion, our studies uncover the molecular basis of NASP as a major H3-H4 chaperone in guarding histone homeostasis.


Assuntos
Chaperonas de Histonas , Histonas , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Homeostase , Chaperonas Moleculares/metabolismo , Ligação Proteica
7.
Genes Dev ; 30(11): 1313-26, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27284163

RESUMO

The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A-H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/metabolismo , Cinetocoros/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrômero/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteômica , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética
8.
Biochem Biophys Res Commun ; 651: 85-91, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36801613

RESUMO

The human facilitates chromatin transcription (FACT) complex, consisting of Spt16 and SSRP1, is a versatile histone chaperone that can engage free H2A-H2B dimer and H3-H4 tetramer (or dimer), and partially unraveled nucleosome. The C-terminal domain of human Spt16 (hSpt16-CTD) is the decisive element for engaging H2A-H2B dimer and partially unraveled nucleosome. The molecular basis of the H2A-H2B dimer recognitions by hSpt16-CTD is not fully comprehended. Here, we present a high-resolution snapshot of the recognitions of the H2A-H2B dimer by hSpt16-CTD via an acidic intrinsically disordered (AID) segment, and reveal some distinct structural features of hSpt16-CTD as compared to the budding yeast Spt16-CTD.


Assuntos
Histonas , Nucleossomos , Humanos , Proteínas de Ligação a DNA , Proteínas de Grupo de Alta Mobilidade , Chaperonas de Histonas , Histonas/metabolismo , Ligação Proteica , Fatores de Elongação da Transcrição
9.
Genes Dev ; 29(12): 1326-40, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109053

RESUMO

Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structural studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/H4 exchange as measured by H3K56ac and new H3 deposition. These interactions are also crucial for the inhibition of spurious transcription from within coding regions. Together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase.


Assuntos
Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histonas/genética , Complexos Multiproteicos , Nucleossomos/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sais/química , Relação Estrutura-Atividade , Transcrição Gênica
10.
J Biol Chem ; 297(6): 101357, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756887

RESUMO

It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1-Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.


Assuntos
Bacteriófagos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Óperon , Pectobacterium carotovorum/virologia , Pseudomonas aeruginosa/virologia , Proteínas Virais/metabolismo , Bacteriófagos/química , Bacteriófagos/genética , Modelos Moleculares , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Conformação Proteica , Multimerização Proteica , Fagos de Pseudomonas/química , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
11.
Nature ; 534(7609): 714-718, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27338793

RESUMO

After DNA replication, chromosomal processes including DNA repair and transcription take place in the context of sister chromatids. While cell cycle regulation can guide these processes globally, mechanisms to distinguish pre- and post-replicative states locally remain unknown. Here we reveal that new histones incorporated during DNA replication provide a signature of post-replicative chromatin, read by the human TONSL­MMS22L homologous recombination complex. We identify the TONSL ankyrin repeat domain (ARD) as a reader of histone H4 tails unmethylated at K20 (H4K20me0), which are specific to new histones incorporated during DNA replication and mark post-replicative chromatin until the G2/M phase of the cell cycle. Accordingly, TONSL­MMS22L binds new histones H3­H4 both before and after incorporation into nucleosomes, remaining on replicated chromatin until late G2/M. H4K20me0 recognition is required for TONSL­MMS22L binding to chromatin and accumulation at challenged replication forks and DNA lesions. Consequently, TONSL ARD mutants are toxic, compromising genome stability, cell viability and resistance to replication stress. Together, these data reveal a histone-reader-based mechanism for recognizing the post-replicative state, offering a new angle to understand DNA repair with the potential for targeted cancer therapy.


Assuntos
Cromatina/química , Cromatina/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Cromatina/genética , Instabilidade Genômica , Histonas/química , Recombinação Homóloga , Humanos , Lisina/metabolismo , Metilação , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
12.
J Integr Plant Biol ; 64(12): 2309-2313, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35587028

RESUMO

The structural basis for histone recognition by the histone chaperone nuclear autoantigenic sperm protein (NASP) remains largely unclear. Here, we showed that Arabidopsis thaliana AtNASP is a monomer and displays robust nucleosome assembly activity in vitro. Examining the structure of AtNASP complexed with a histone H3 α3 peptide revealed a binding mode that is conserved in human NASP. AtNASP recognizes the H3 N-terminal region distinct from human NASP. Moreover, AtNASP forms a co-chaperone complex with ANTI-SILENCING FUNCTION 1 (ASF1) by binding to the H3 N-terminal region. Therefore, we deciphered the structure of AtNASP and the basis of the AtNASP-H3 interaction.


Assuntos
Arabidopsis , Histonas , Masculino , Humanos , Histonas/metabolismo , Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo , Sementes/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ligação Proteica , Autoantígenos/metabolismo , Proteínas Nucleares/metabolismo
13.
Nucleic Acids Res ; 47(19): 10388-10399, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31504793

RESUMO

HMCES and yedK were recently identified as sensors of abasic sites in ssDNA. In this study, we present multiple crystal structures captured in the apo-, nonspecific-substrate-binding, specific-substrate-binding, and product-binding states of yedK. In combination with biochemical data, we unveil the molecular basis of AP site sensing in ssDNA by yedK. Our results indicate that yedK has a strong preference for AP site-containing ssDNA over native ssDNA and that the conserved Glu105 residue is important for identifying AP sites in ssDNA. Moreover, our results reveal that a thiazolidine linkage is formed between yedK and AP sites in ssDNA, with the residues that stabilize the thiazolidine linkage important for the formation of DNA-protein crosslinks between yedK and the AP sites. We propose that our findings offer a unique platform to develop yedK and other SRAP domain-containing proteins as tools for detecting abasic sites in vitro and in vivo.


Assuntos
DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Conformação Proteica , Uracila-DNA Glicosidase/genética , Sítios de Ligação/genética , Escherichia coli/genética , Resposta SOS em Genética , Especificidade por Substrato , Tiazolidinas/química
14.
Genes Dev ; 25(9): 901-6, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21478274

RESUMO

In higher eukaryotes, the centromere is epigenetically specified by the histone H3 variant Centromere Protein-A (CENP-A). Deposition of CENP-A to the centromere requires histone chaperone HJURP (Holliday junction recognition protein). The crystal structure of an HJURP-CENP-A-histone H4 complex shows that HJURP binds a CENP-A-H4 heterodimer. The C-terminal ß-sheet domain of HJURP caps the DNA-binding region of the histone heterodimer, preventing it from spontaneous association with DNA. Our analysis also revealed a novel site in CENP-A that distinguishes it from histone H3 in its ability to bind HJURP. These findings provide key information for specific recognition of CENP-A and mechanistic insights into the process of centromeric chromatin assembly.


Assuntos
Autoantígenos/química , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Histonas/química , Modelos Moleculares , Autoantígenos/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína
15.
Nature ; 491(7425): 560-5, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23075851

RESUMO

Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3-H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3-H4 dimer, with complex formation accompanied by structural transitions in the H3.3-H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly 90 in H3.3 and Glu 225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.


Assuntos
DNA/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Correpressoras , Cristalografia por Raios X , DNA/química , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Água/química , Água/metabolismo
16.
J Biol Chem ; 287(12): 9137-46, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22262834

RESUMO

Rtt107 (regulator of Ty1 transposition 107; Esc4) is a DNA repair protein from Saccharomyces cerevisiae that can restore stalled replication forks following DNA damage. There are six BRCT (BRCA1 C-terminal) domains in Rtt107 that act as binding sites for other recruited proteins during DNA repair. Several Rtt107 binding partners have been identified, including Slx4, Rtt101, Rad55, and the Smc5/6 (structural maintenance of chromosome) protein complex. Rtt107 can reportedly be recruited to chromatin in the presence of Rtt101 and Rtt109 upon DNA damage, but the chromatin-binding site of Rtt107 has not been identified. Here, we report our investigation of the interaction between phosphorylated histone H2A (γH2A) and the C-terminal tandem BRCT repeats (BRCT(5)-BRCT(6)) of Rtt107. The crystal structures of BRCT(5)-BRCT(6) alone and in a complex with γH2A reveal the molecular basis of the Rtt107-γH2A interaction. We used in vitro mutagenesis and a fluorescence polarization assay to confirm the location of the Rtt107 motif that is crucial for this interaction. In addition, these assays indicated that this interaction requires the phosphorylation of H2A. An in vivo phenotypic analysis in yeast demonstrated the critical role of BRCT(5)-BRCT(6) and its interaction with γH2A during the DNA damage response. Our results shed new light on the molecular mechanism by which Rtt107 is recruited to chromatin in response to stalled DNA replication forks.


Assuntos
Reparo do DNA , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequências de Repetição em Tandem , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromatina/genética , Cromatina/metabolismo , Cristalografia por Raios X , Dano ao DNA , Histonas/química , Histonas/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
17.
J Biol Chem ; 286(33): 29218-29226, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21676864

RESUMO

Spt6 is a highly conserved transcription elongation factor and histone chaperone. It binds directly to the RNA polymerase II C-terminal domain (RNAPII CTD) through its C-terminal region that recognizes RNAPII CTD phosphorylation. In this study, we determined the solution structure of the C-terminal region of Saccharomyces cerevisiae Spt6, and we discovered that Spt6 has two SH2 domains in tandem. Structural and phylogenetic analysis revealed that the second SH2 domain was evolutionarily distant from canonical SH2 domains and represented a novel SH2 subfamily with a novel binding site for phosphoserine. In addition, NMR chemical shift perturbation experiments demonstrated that the tandem SH2 domains recognized Tyr(1), Ser(2), Ser(5), and Ser(7) phosphorylation of RNAPII CTD with millimolar binding affinities. The structural basis for the binding of the tandem SH2 domains to different forms of phosphorylated RNAPII CTD and its physiological relevance are discussed. Our results also suggest that Spt6 may use the tandem SH2 domain module to sense the phosphorylation level of RNAPII CTD.


Assuntos
Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Sítios de Ligação/fisiologia , Evolução Molecular , Chaperonas de Histonas , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação/fisiologia , Filogenia , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Domínios de Homologia de src
18.
Elife ; 112022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36227650

RESUMO

A newly discovered pathway suggests histone proteins H3 and H4 are imported into the nucleus as individual units rather than joined together as heterodimers as was previously thought.


Assuntos
Núcleo Celular , Histonas , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Histonas/metabolismo
19.
J Mol Biol ; 434(19): 167756, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870648

RESUMO

Histone chaperones, which constitute an interaction and functional network involved in all aspects of histone metabolism, have to date been identified only in eukaryotes. The Epstein-Barr virus tegument protein BKRF4 is a histone-binding protein that engages histones H2A-H2B and H3-H4, and cellular chromatin, inhibiting the host DNA damage response. Here, we identified BKRF4 as a bona fide viral histone chaperone whose histone-binding domain (HBD) forms a co-chaperone complex with the human histone chaperone ASF1 in vitro. We determined the crystal structures of the quaternary complex of the BKRF4 HBD with human H3-H4 dimer and the histone chaperone ASF1b and the ternary complex of the BKRF4 HBD with human H2A-H2B dimer. Through structural and biochemical studies, we elucidated the molecular basis for H3-H4 and H2A-H2B recognition by BKRF4. We also revealed two conserved motifs, D/EL and DEF/Y/W, within the BKRF4 HBD, which may represent common motifs through which histone chaperones target H3-H4 and H2A-H2B, respectively. In conclusion, our results identify BKRF4 as a histone chaperone encoded by the Epstein-Barr virus, representing a typical histone chaperone found in a non-eukaryote. We envision that more histone chaperones await identification and characterization in DNA viruses and even archaea.


Assuntos
Proteínas do Capsídeo , Proteínas de Ciclo Celular , Herpesvirus Humano 4 , Chaperonas de Histonas , Proteínas do Capsídeo/química , Proteínas de Ciclo Celular/química , Cromatina/química , Herpesvirus Humano 4/genética , Chaperonas de Histonas/química , Histonas/metabolismo , Humanos , Ligação Proteica , Conformação Proteica
20.
Nat Commun ; 13(1): 7549, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477448

RESUMO

The RNA-targeting type III-E CRISPR-gRAMP effector interacts with a caspase-like protease TPR-CHAT to form the CRISPR-guided caspase complex (Craspase), but their functional mechanism is unknown. Here, we report cryo-EM structures of the type III-E gRAMPcrRNA and gRAMPcrRNA-TPR-CHAT complexes, before and after either self or non-self RNA target binding, and elucidate the mechanisms underlying RNA-targeting and non-self RNA-induced protease activation. The associated TPR-CHAT adopted a distinct conformation upon self versus non-self RNA target binding, with nucleotides at positions -1 and -2 of the CRISPR-derived RNA (crRNA) serving as a sensor. Only binding of the non-self RNA target activated the TPR-CHAT protease, leading to cleavage of Csx30 protein. Furthermore, TPR-CHAT structurally resembled eukaryotic separase, but with a distinct mechanism for protease regulation. Our findings should facilitate the development of gRAMP-based RNA manipulation tools, and advance our understanding of the virus-host discrimination process governed by a nuclease-protease Craspase during type III-E CRISPR-Cas immunity.


Assuntos
Peptídeo Hidrolases , RNA , Peptídeo Hidrolases/genética , RNA/genética , Caspases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA