Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134213

RESUMO

Cell death resistance is a hallmark of tumor cells that drives tumorigenesis and drug resistance. Targeting cell death resistance-related genes to sensitize tumor cells and decrease their cell death threshold has attracted attention as a potential antitumor therapeutic strategy. However, the underlying mechanism is not fully understood. Recent studies have reported that NeuroD1, first discovered as a neurodifferentiation factor, is upregulated in various tumor cells and plays a crucial role in tumorigenesis. However, its involvement in tumor cell death resistance remains unknown. Here, we found that NeuroD1 was highly expressed in hepatocellular carcinoma (HCC) cells and was associated with tumor cell death resistance. We revealed that NeuroD1 enhanced HCC cell resistance to ferroptosis, a type of cell death caused by aberrant redox homeostasis that induces lipid peroxide accumulation, leading to increased HCC cell viability. NeuroD1 binds to the promoter of glutathione peroxidase 4 (GPX4), a key reductant that suppresses ferroptosis by reducing lipid peroxide, and activates its transcriptional activity, resulting in decreased lipid peroxide and ferroptosis. Subsequently, we showed that NeuroD1/GPX4-mediated ferroptosis resistance was crucial for HCC cell tumorigenic potential. These findings not only identify NeuroD1 as a regulator of tumor cell ferroptosis resistance but also reveal a novel molecular mechanism underlying the oncogenic function of NeuroD1. Furthermore, our findings suggest the potential of targeting NeuroD1 in antitumor therapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peróxidos Lipídicos , Ferroptose/genética , Neoplasias Hepáticas/genética , Peróxidos , Carcinogênese , Linhagem Celular Tumoral
2.
Mol Ther ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734897

RESUMO

Altered branched chain amino acids (BCAAs), including leucine, isoleucine, and valine, are frequently observed in patients with advanced cancer. We evaluated the efficacy of chimeric antigen receptor (CAR) T cell-mediated cancer cell lysis potential in the immune microenvironment of BCAA supplementation and deletion. BCAA supplementation increased cancer cell killing percentage, while accelerating BCAA catabolism and decreasing BCAA transporter decreased cancer cell lysis efficacy. We thus designed BCKDK engineering CAR T cells for the reprogramming of BCAA metabolism in the tumor microenvironment based on the genotype and phenotype modification. BCKDK overexpression (OE) in CAR-T cells significantly improved cancer cell lysis, while BCKDK knockout (KO) resulted in inferior lysis potential. In an in vivo experiment, BCKDK-OE CAR-T cell treatment significantly prolonged the survival of mice bearing NALM6-GL cancer cells, with the differentiation of central memory cells and an increasing proportion of CAR-T cells in the peripheral circulation. BCKDK-KO CAR-T cell treatment resulted in shorter survival and a decreasing percentage of CAR-T cells in the peripheral circulation. In conclusion, BCKDK-engineered CAR-T cells exert a distinct phenotype for superior anticancer efficiency.

3.
J Cell Mol Med ; 28(16): e70014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39153211

RESUMO

Anaplastic thyroid cancer (ATC), an aggressive malignancy with virtually 100% disease-specific mortality, has long posed a formidable challenge in oncology due to its resistance to conventional treatments and the severe side effects associated with current regimens such as doxorubicin chemotherapy. Consequently, there was urgent need to identify novel candidate compounds that could provide innovative therapeutic strategies for ATC. Ophiopogonin D' (OPD'), a triterpenoid saponin extracted, yet its roles in ATC has not been reported. Our data demonstrated that OPD' potently inhibited proliferation and metastasis of ATC cells, promoting cell cycle arrest and apoptosis. Remarkably, OPD' impeded growth and metastasis of ATC in vitro and in vivo, displaying an encouraging safety profile. Regulator of G-protein signalling 4 (RGS4) expression was significantly up-regulated in ATC compared to normal tissues, and this upregulation was suppressed by OPD' treatment. Mechanistically, we elucidated that the transcription factor JUN bound to the RGS4 promoter, driving its transactivation. However, OPD' interacted with JUN, attenuating its transcriptional activity and thereby disrupting RGS4 overexpression. In summary, our research revealed that OPD' bound with JUN, which in turn resulted in the suppression of transcriptional activation of RGS4, thereby eliciting cell cycle arrest and apoptosis in ATC cells. These findings could offer promise in the development of high-quality candidate compounds for treatment in ATC.


Assuntos
Apoptose , Proliferação de Células , Proteínas RGS , Saponinas , Transdução de Sinais , Espirostanos , Carcinoma Anaplásico da Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Saponinas/farmacologia , Proteínas RGS/metabolismo , Proteínas RGS/genética , Proliferação de Células/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espirostanos/farmacologia , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Camundongos Nus , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Metástase Neoplásica
4.
J Cell Mol Med ; 28(7): e18182, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38498903

RESUMO

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Nus , Peixe-Zebra/metabolismo , Instabilidade Cromossômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Cinesinas/genética
5.
J Cell Mol Med ; 28(16): e70003, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39153207

RESUMO

Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.


Assuntos
Apoptose , Hipertensão Pulmonar , Remodelação Vascular , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Animais , Necroptose , Transdução de Sinais , Autofagia , Ferroptose , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Piroptose
6.
J Am Chem Soc ; 146(4): 2615-2623, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38117537

RESUMO

Herpes simplex virus-1 (HSV-1) utilizes multiple viral surface glycoproteins to trigger virus entry and fusion. Among these glycoproteins, glycoprotein D (gD) functions as a receptor-binding protein, which makes it an attractive target for the development of vaccines against HSV-1 infection. Several recombinant gD subunit vaccines have been investigated in both preclinical and clinical phases with varying degrees of success. It is fundamentally critical to explore the functions of gD glycans. In light of this, we report an efficient synthetic platform to construct glycosylated gDs bearing homogeneous glycans at N94 and N121. The oligosaccharides were prepared by enzymatic synthesis and conjugated to peptidyl sectors. The glycoproteins were constructed via a combination of 7-(piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ)-assisted expressed protein ligation and ß-mercapto amino acid-assisted-desulfurization strategies. Biological studies showed that synthetic gDs exhibited potent in vivo activity in mice.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 1 , Animais , Camundongos , Herpesvirus Humano 1/metabolismo , Proteínas do Envelope Viral/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo
7.
Anal Chem ; 96(29): 12189-12196, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975803

RESUMO

Aging represents a significant risk factor for compromised tissue function and the development of chronic diseases in the human body. This process is intricately linked to oxidative stress, with HClO serving as a vital reactive oxygen species (ROS) within biological systems due to its strong oxidative properties. Hence, conducting a thorough examination of HClO in the context of aging is crucial for advancing the field of aging biology. In this work, we successfully developed a fluorescent probe, OPD, tailored specifically for detecting HClO in senescent cells and in vivo. Impressively, OPD exhibited a robust reaction with HClO, showcasing outstanding selectivity, sensitivity, and photostability. Notably, OPD effectively identified HClO in senescent cells for the first time, confirming that DOX- and ROS-induced senescent cells exhibited higher HClO levels compared to uninduced normal cells. Additionally, in vivo imaging of zebrafish demonstrated that d-galactose- and ROS-stimulated senescent zebrafish displayed elevated HClO levels compared to normal zebrafish. Furthermore, when applied to mouse tissues and organs, OPD revealed increased fluorescence in the organs of senescent mice compared to their nonsenescent counterparts. Our findings also illustrated the probe's potential for detecting changes in HClO content pre- and post-aging in living mice. Overall, this probe holds immense promise as a valuable tool for in vivo detection of HClO and for studying aging biology in live organisms.


Assuntos
Senescência Celular , Corantes Fluorescentes , Espécies Reativas de Oxigênio , Peixe-Zebra , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Senescência Celular/efeitos dos fármacos , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Ácido Hipocloroso/análise , Ácido Hipocloroso/metabolismo , Doxorrubicina/farmacologia , Imagem Óptica , Envelhecimento
8.
BMC Plant Biol ; 24(1): 36, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191323

RESUMO

Maize cultivated for dry grain covers approximately 197 million hectares globally, securing its position as the second most widely grown crop worldwide after wheat. Although spermidine and biochar individually showed positive impacts on maize production in existing literature, their combined effects on maize growth, physiology, nutrient uptake remain unclear and require further in-depth investigation. That's why a pot experiment was conducted on maize with spermidine and potassium enriched biochar (KBC) as treatments in Multan, Pakistan, during the year 2022. Four levels of spermidine (0, 0.15, 0.30, and 0.45mM) and two levels of potassium KBC (0 and 0.50%) were applied in completely randomized design (CRD). Results showed that 0.45 mM spermidine under 0.50% KBC caused significant enhancement in maize shoot length (11.30%), shoot fresh weight (25.78%), shoot dry weight (17.45%), root length (27.95%), root fresh weight (26.80%), and root dry weight (20.86%) over control. A significant increase in maize chlorophyll a (50.00%), chlorophyll b (40.40%), total chlorophyll (47.00%), photosynthetic rate (34.91%), transpiration rate (6.51%), and stomatal conductance (15.99%) compared to control under 0.50%KBC validate the potential of 0.45 mM spermidine. An increase in N, P, and K concentration in the root and shoot while decrease in electrolyte leakage and antioxidants also confirmed that the 0.45 mM spermidine performed more effectively with 0.50%KBC. In conclusion, 0.45 mM spermidine with 0.50%KBC is recommended for enhancing maize growth.


Assuntos
Potássio , Zea mays , Clorofila A , Espermidina/farmacologia
9.
BMC Plant Biol ; 24(1): 63, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262953

RESUMO

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.


Assuntos
Micorrizas , Antioxidantes , Zea mays , Carvão Vegetal , Ácido Edético , Clorofila A , Estresse Salino , Clorofila , Solo
10.
Am Heart J ; 273: 1-9, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38508571

RESUMO

BACKGROUND: Kawasaki disease is a pediatric acute systemic vasculitis that specifically involves the coronary arteries. Timely initiation of immunoglobulin plus aspirin is necessary for diminishing the incidence of coronary artery abnormalities (CAAs). The optimal dose of aspirin, however, remains controversial. The trial aims to evaluate if low-dose aspirin is noninferior to moderate-dose in reducing the risk of CAAs during the initial treatment of Kawasaki disease. METHODS: This is a multi-center, prospective, randomized, open-label, blinded endpoint, noninferiority trial to be conducted in China. The planned study duration is from 2023 to 2026. Data will be analyzed according to intention-to-treat principles. Participants are children and adolescents under the age of 18 with Kawasaki disease, recruited from the inpatient units. A sample size of 1,346 participants will provide 80% power with a one-sided significance level of 0.025. Qualifying children will be randomized (1:1) to receive either intravenous immunoglobulin (2 g/kg) plus oral moderate-dose aspirin (30-50 mg·kg-1·d-1) until the patient is afebrile for at least 48 hours, or immunoglobulin plus low-dose aspirin (3-5 mg·kg-1·d-1) as initial treatment. The primary outcome will be the occurrence of CAAs at 8 weeks after immunoglobulin infusion. Independent blinded pediatric cardiologists will assess the primary endpoint using echocardiography. CONCLUSIONS: There is a shortage of consensus on the dose of aspirin therapy for Kawasaki disease due to the lack of evidence. The results of our randomized trial will provide more concrete evidence for the efficacy and adverse events of low- or moderate-dose aspirin in the acute phase of Kawasaki disease. TRIAL REGISTRATION: www.chictr.org.cn: ChiCTR2300072686.


Assuntos
Aspirina , Doença da Artéria Coronariana , Imunoglobulinas Intravenosas , Síndrome de Linfonodos Mucocutâneos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Aspirina/administração & dosagem , Aspirina/uso terapêutico , China/epidemiologia , Doença da Artéria Coronariana/prevenção & controle , Doença da Artéria Coronariana/etiologia , Vasos Coronários/diagnóstico por imagem , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Estudos de Equivalência como Asunto , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulinas Intravenosas/administração & dosagem , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/uso terapêutico , Síndrome de Linfonodos Mucocutâneos/complicações , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
11.
Mol Carcinog ; 63(7): 1235-1247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517048

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor type with worse clinical outcome due to the hallmarks of strong invasiveness, high rate of recurrence, and therapeutic resistance to temozolomide (TMZ), the first-line drug for GBM, representing a major challenge for successful GBM therapeutics. Understanding the underlying mechanisms that drive GBM progression will shed novel insight into therapeutic strategies. Receptor-type tyrosine-protein phosphatase S (PTPRS) is a frequently mutated gene in human cancers, including GBM. Its role in GBM has not yet been clarified. Here, inactivating PTPRS mutation or deficiency was frequently found in GBM, and deficiency in PTPRS significantly induced defects in the G2M checkpoint and limited GBM cells proliferation, leading to potent resistance to TMZ treatment in vitro and in vivo. Surprisingly, loss of PTPRS triggered an unexpected mesenchymal phenotype that markedly enhances the migratory capabilities of GBM cells through upregulating numerous matrix metalloproteinases via MAPK-MEK-ERK signaling. Therefore, this work provides a therapeutic window for precisely excluding PTPRS-mutated patients who do not respond to TMZ.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Movimento Celular/efeitos dos fármacos , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
12.
BMC Cancer ; 24(1): 654, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811891

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have demonstrated superior clinical efficacy in prolonging overall survival (OS) as the second-line treatment for advanced or metastatic esophageal squamous cell carcinoma (ESCC), and were recommended by the guidelines. However, it remains uncertain which ICI is the most cost-effective. This study assessed the cost-effectiveness of ICIs as the second-line treatment for ESCC based on the perspective of the Chinese healthcare system. METHODS: A network meta-analysis (NMA) was performed to obtain the Hazard ratios (HRs) for indirect comparisons. A three-state Markov model with a 10-year time horizon was conducted to assess the cost-effectiveness. The state transition probabilities were calculated with Kaplan-Meier (KM) curves data from clinical trial and HRs from the NMA. Utilities and costs were derived from local charges or previously published studies. Univariate and probabilistic sensitivity analyses (PSA) were performed to examine model robustness. The results were assessed based on the total costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). RESULTS: Five clinical trials (ATTRACTION-3, ESCORT, KEYNOTE-181, ORIENT-2, RATIONALE-302) with a total of 1797 patients were included in the NMA. The NMA showed that both camrelizumab and tislelizumab received relatively high rankings for progression-free survival (PFS) and OS. Compared with sintilimab, treatment with tislelizumab and camrelizumab gained 0.018 and 0.034 additional QALYs, resulting in incremental ICERs of $75,472.65/QALY and $175,681.9/QALY, respectively. Nivolumab and pembrolizumab produced lower QALYs and greater costs, suggesting that both were dominated in comparison to sintilimab. HRs and health state utilities were the most influential parameters in most univariate sensitivity analyses of paired comparisons. PSA results suggested that sintilimab had an 84.4% chance of being the most cost-effective treatment regimen at the WTP threshold of $38,223.34/QALY. In the scenario analysis, sintilimab would no longer be cost-effective, if the price of camrelizumab was assumed to decrease by 64.6% or the price of tislelizumab was assumed to decrease by 16.9%. CONCLUSIONS AND RELEVANCE: Among the five potential competing ICIs, sintilimab was likely to be the most cost-effective regimen as the second-line treatment for locally advanced or metastatic ESCC in China.


Assuntos
Análise Custo-Benefício , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Inibidores de Checkpoint Imunológico , Metanálise em Rede , Anos de Vida Ajustados por Qualidade de Vida , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/economia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/economia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/economia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/economia , Cadeias de Markov , Nivolumabe/uso terapêutico , Nivolumabe/economia , Análise de Custo-Efetividade
13.
Langmuir ; 40(1): 677-686, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38115196

RESUMO

Graphene has a promising application prospect in integrated circuits and microelectromechanical systems, and sphere-plane contacts are their common contact types. At present, it is difficult to explain the time dependence of the adhesion force of the sphere-plane contact by conventional theory. Therefore, a single rough peak of sphere-plane contact adhesion force model based on variable water contact angle theory and Bradley contact theory was established; the aim is to reveal the changing law of graphene adhesion force. Then, the time dependence of the graphene surface adhesion force at different humidity levels was investigated by using an atomic force microscopy spherical probe. Finally, a quantitative comparative analysis of the theory and experiment was performed. The results show that the theoretical adhesion force was in good agreement with the experimental measurement results. The time dependence of graphene surface adhesion was not obvious within a relative humidity of 45-55%. When the relative humidity was greater than 65%, the graphene surface adhesion first increased and then decreased with dwell time and finally tended to be stable. Because of the increase in relative humidity, the capillary condensation effect increases, and then the adhesion force increases with the development of the meniscus. When the water film was generated on the sample surface, the adhesion force decreased until the meniscus achieved equilibrium.

14.
J Org Chem ; 89(1): 740-747, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101804

RESUMO

An efficient transition-metal-free fluorination synthesis of N-H-free 3-heteroaryl-oxindoles with Selectfluor was depicted. Under mild reaction conditions, a series of 3-heteroaryl-fluorooxindoles were produced in yield of 62-88% using Selectfluor as a fluorine source.

15.
Inorg Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159455

RESUMO

Single-band ratiometric (SBR) strategies present huge potential in the field of luminescence intensity ratio thermometry owing to their excellent signal discrepancy and appealing simplicity. Herein, we employ the approach of Na replacing Li in the LiYGeO4:Eu3+ phosphor to regulate the thermal stability of the O2- → Eu3+ charge-transfer band (CTB) and obtain significant thermal enhancement of luminescence under CTB edge excitation. Combined with the obvious thermal quenching of luminescence under ground-state absorption excitation, the ratio of the single emission band increases by 18 times when the temperature increases from 300 to 570 K. Therefore, such excitation-wavelength-dependent diametrically opposite thermal luminescence behaviors enabled SBR thermometry, whose maximum relative sensitivity can reach up to 3.6% K-1. We demonstrate that the O2- → Eu3+ CTB thermal red-shifts and enhancements are particularly attractive for SBR thermometry with high sensitivity by utilizing the diametrically reversed thermal excitation between the O2- → Eu3+ CTB edge and the 4f → 4f transition of Eu3+. These advances have opened up a novel horizon for the development of high relative sensitivity and performance of the SBR thermometry strategy.

16.
Inorg Chem ; 63(10): 4461-4473, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38421802

RESUMO

Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.

17.
Bioorg Chem ; 147: 107394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691906

RESUMO

Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for treating non-small-cell lung cancer (NSCLC). However, there are no approved inhibitors for the C797S resistance mutation caused by the third-generation EGFR inhibitor (Osimertinib). Therefore, the development of fourth-generation EGFR inhibitors is urgent. In this study, we clarified the structure-activity relationship of several synthesized compounds as fourth-generation inhibitors against human triple (Del19/T790M/C797S) mutation. Representative compound 52 showed potent inhibitory activity against EGFRL858R/T790M/C797S with an IC50 of 0.55 nM and significantly inhibited the proliferation of the Ba/F3 cell line harboring EGFRL858R/T790M/C797S with an IC50 of 43.28 nM. Moreover, 52 demonstrated good pharmacokinetic properties and excellent in vivo efficacy. Overall, the compound 52 can be considered a promising candidate for overcoming EGFR C797S-mediated mutations.


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Acrilamidas/farmacologia , Acrilamidas/química , Acrilamidas/síntese química , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Compostos de Anilina/síntese química , Compostos de Anilina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estrutura Molecular , Animais , Camundongos , Linhagem Celular Tumoral , Mutação , Indóis , Pirimidinas
18.
Environ Res ; 249: 118383, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331152

RESUMO

Zonation is a typical pattern of soil distribution and species assembly across riparian habitats. Microorganisms are essential members of riparian ecosystems and whether soil microbial communities demonstrate similar zonation patterns and how bulk and rhizosphere soil microorganisms interact along the elevation (submergence stress) gradient remain largely unknown. In this study, bulk and rhizosphere (dominant plant) soil samples were collected and investigated across riparian zones where the submergence stress intensity increased as the elevation decreased. Results showed that the richness of bacterial communities in bulk and rhizosphere soil samples was significantly different and presented a zonation pattern along with the submergence stress gradient. Bulk soil at medium elevation that underwent moderate submergence stress had the most abundant bacterial communities, while the species richness of rhizobacteria at low elevation that experienced serious submergence stress was the highest. Additionally, principal coordinate analysis (PCoA) and significance tests showed that bulk and rhizosphere soil samples were distinguished according to the structure of bacterial communities, and so were bulk or rhizosphere soil samples from different elevations. Redundancy analysis (RDA) and Mantel test suggested that bacterial communities of bulk soil mainly relied on the contents of soil organic matter, total carbon (TC), total nitrogen (TN), sodium (Na), calcium (Ca) and magnesium (Mg). Contrastingly, the contents of Na and Mg were the main factors explaining the variation in rhizobacterial community composition. Correlation and microbial source tracking analyses showed thatthe relationship of bulk and rhizosphere soil bacteria became much stronger, and the rhizosphere soil may get more bacterial communities from bulk soil with the increase in submergence severity. Our results suggest that the abiotic and biotic components of the riparian ecosystem are closely covariant along the submergence stress gradient and imply that the bacterial community may be a key node linking soil physiochemical properties and vegetation communities.


Assuntos
Bactérias , Rizosfera , Microbiologia do Solo , China , Bactérias/classificação , Rios/microbiologia , Rios/química , Altitude , Microbiota , Solo/química
19.
Mol Divers ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012564

RESUMO

Prolactinoma was the most common functional pituitary neuroendocrine tumor tissue type, which was caused by excessive proliferation of pituitary prolactin (PRL) cells. Drug therapy of dopamine receptor agonists was generally considered as the prior treatment for prolactinoma patients. However, there were still prolactinoma patients who were resistant to dopamine agonists. Studies have been reported that paeoniflorin can inhibit the secretion of PRL in prolactinoma cells lacking dopamine D2 receptor (D2R) expression, and paeoniflorin can be metabolized into albiflorin by intestinal flora in rats. The effect of albiflorin on prolactinoma has not been reported yet. In this study, network pharmacology was used to analyze the mechanism of paeoniflorin and its metabolite albiflorin as multi-target therapy for prolactinoma, and the experimental verification was carried out. In order to clarify the complex relationship among paeoniflorin, albiflorin and prolactinoma, we constructed a component-target-disease network, and further constructed interaction network, MMP9, EGFR, FGF2, FGFR1 and LGALS3 were screened as the core targets. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that paeoniflorin and albiflorin may be involved in various pathways in the treatment of prolactinoma, included relaxin signaling pathway and PI3K-Akt signaling pathway. Molecular docking analysis showed that paeoniflorin and albiflorin had good binding activity with MMP9. Western blotting results showed that paeoniflorin and albiflorin could significantly reduce the expression of MMP9, and ELISA results showed that paeoniflorin and albiflorin could significantly reduce the concentration of PRL in GH3 cells, and the reduce degree of albiflorin was stronger than paeoniflorin at 50 µM, which indicated that albiflorin might be a potential drug to treat prolactinoma, which can regulate prolactinoma through MMP9 and reduce the concentration of PRL. Our study provided a new therapeutic strategy for prolactinoma.

20.
Neoplasma ; 71(3): 255-265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764296

RESUMO

The most common primary malignant tumor in the adult brain is glioblastoma multiforme (GBM); however, its underlying pathogenic mechanism remains elusive. The never in mitosis (NIMA)-related kinase 2 (NEK2) has been closely associated with the prognosis of various malignancies. Nevertheless, the complete elucidation of NEK2's potential clinical value, particularly in glioma prognosis and development, remains lacking. U87MG and A172 glioblastoma cells were infected with sh-NEK2 lentivirus or oe-NEK2 plasmid to investigate the effect of NEK2 on cell proliferation, migration, and invasion. Cell viability was measured using CCK-8 and colony formation assays, while Transwell assay was utilized to assess cell migration and invasion. Protein expression levels were determined through western blot analysis. Additionally, CGGA and TCGA databases were used for bioinformatics analysis in order to examine the NEK2 expression. Through comprehensive bioinformatics analysis, we identified elevated mRNA expression levels of NEK2 in gliomas compared to normal tissues, which correlated with poor prognosis among glioma patients. Moreover, functional experiments revealed that silencing NEK2 suppressed glioma cell proliferation while overexpression of NEK2 promoted migration and invasion capabilities. Finally, our study uncovered that NEK2 regulates the malignant progression of TP53 wild-type glioblastoma by facilitating TP53 ubiquitination.


Assuntos
Movimento Celular , Proliferação de Células , Glioblastoma , Quinases Relacionadas a NIMA , Proteína Supressora de Tumor p53 , Ubiquitinação , Humanos , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA