Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795413

RESUMO

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Assuntos
RNA Mensageiro/genética , RNA Viral/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Células HeLa , Humanos , Imunogenicidade da Vacina , Injeções Intramusculares , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Th1/imunologia , Potência de Vacina , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
2.
Immunity ; 46(3): 446-456, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314593

RESUMO

Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Humanos , Macaca mulatta , Camundongos , Microscopia Confocal , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia
3.
J Virol ; 96(23): e0087922, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377874

RESUMO

The glycan loop of Zika virus (ZIKV) envelope protein (E) contains the glycosylation site and has been well documented to be important for viral pathogenesis and transmission. In the present study, we report that deletions in the E glycan loop, which were recorded in African ZIKV strains previously, have re-emerged in their contemporary Asian lineages. Here, we generated recombinant ZIKV containing specific deletions in the E glycan loop by reverse genetics. Extensive in vitro and in vivo characterization of these deletion mutants demonstrated an attenuated phenotype in an adult A129 mouse model and reduced oral infections in mosquitoes. Surprisingly, these glycan loop deletion mutants exhibited an enhanced neurovirulence phenotype, and resulted in a more severe microcephalic brain in neonatal mouse models. Crystal structures of the ZIKV E protein and a deletion mutant at 2.5 and 2.6 Å, respectively, revealed that deletion of the glycan loop induces encephalitic flavivirus-like conformational alterations, including the appearance of perforations on the surface and a clear change in the topology of the loops. Overall, our results demonstrate that the E glycan loop deletions represent neonatal mouse neurovirulence markers of ZIKV. IMPORTANCE Zika virus (ZIKV) has been identified as a cause of microcephaly and acquired evolutionary mutations since its discovery. Previously deletions in the E glycan loop were recorded in African ZIKV strains, which have re-emerged in the contemporary Asian lineages recently. The glycan loop deletion mutants are not glycosylated, which are attenuated in adult A129 mouse model and reduced oral infections in mosquitoes. More importantly, the glycan loop deletion mutants induce an encephalitic flavivirus-like conformational alteration in the E homodimer, resulting in a significant enhancement of neonatal mouse neurovirulence. This study underscores the critical role of glycan loop deletion mutants in ZIKV pathogenesis, highlighting a need for global virological surveillance for such ZIKV variants.


Assuntos
Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Animais , Camundongos , Modelos Animais de Doenças , Polissacarídeos/química , Proteínas do Envelope Viral/genética , Virulência , Replicação Viral/genética , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/virologia
4.
J Med Virol ; 95(12): e29278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088537

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22,995 and 28,866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Células CACO-2 , Recombinação Homóloga , Glicoproteína da Espícula de Coronavírus
5.
J Med Virol ; 94(7): 3223-3232, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322439

RESUMO

SARS-CoV-2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS-CoV-2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS-CoV-2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood. In this study, we systematically investigated the infectivity and pathogenicity of three VOCs, Alpha, Beta, and Delta, in mice in comparison with two well-understood SARS-CoV-2 mouse-adapted strains, MASCp6 and MASCp36, sharing key mutations in the receptor-binding domain (RBD) with Alpha or Beta, respectively. Our results showed that the Beta variant had the strongest infectivity and pathogenicity among the three VOCs, while the Delta variant only caused limited replication and mild pathogenic changes in the mouse lung, which is much weaker than what the Alpha variant did. Meanwhile, Alpha showed comparable infectivity in lungs in comparison with MASCp6, and Beta only showed slightly lower infectivity in lungs when compared with MASCp36. These results indicated that all three VOCs have acquired the capability to infect mice, highlighting the ongoing spillover risk of SARS-CoV-2 from humans to mice during the continued evolution of SARS-CoV-2, and that the key amino acid mutations in the RBD of mouse-adapted strains may be referenced as an early-warning indicator for predicting the spillover risk of newly emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31896596

RESUMO

Mosquito-borne flaviviruses consist of a positive-sense genome RNA flanked by the untranslated regions (UTRs). There is a panel of highly complex RNA structures in the UTRs with critical functions. For instance, Xrn1-resistant RNAs (xrRNAs) halt Xrn1 digestion, leading to the production of subgenomic flaviviral RNA (sfRNA). Conserved short direct repeats (DRs), also known as conserved sequences (CS) and repeated conserved sequences (RCS), have been identified as being among the RNA elements locating downstream of xrRNAs, but their biological function remains unknown. In this study, we revealed that the specific DRs are involved in the production of specific sfRNAs in both mammalian and mosquito cells. Biochemical assays and structural remodeling demonstrate that the base pairings in the stem of these DRs control sfRNA formation by maintaining the binding affinity of the corresponding xrRNAs to Xrn1. On the basis of these findings, we propose that DRs functions like a bracket holding the Xrn1-xrRNA complex for sfRNA formation.IMPORTANCE Flaviviruses include many important human pathogens. The production of subgenomic flaviviral RNAs (sfRNAs) is important for viral pathogenicity as a common feature of flaviviruses. sfRNAs are formed through the incomplete degradation of viral genomic RNA by the cytoplasmic 5'-3' exoribonuclease Xrn1 halted at the Xrn1-resistant RNA (xrRNA) structures within the 3'-UTR. The 3'-UTRs of the flavivirus genome also contain distinct short direct repeats (DRs), such as RCS3, CS3, RCS2, and CS2. However, the biological functions of these ancient primary DR sequences remain largely unknown. Here, we found that DR sequences are involved in sfRNA formation and viral virulence and provide novel targets for the rational design of live attenuated flavivirus vaccine.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Flavivirus/metabolismo , Genoma Viral/fisiologia , Conformação de Ácido Nucleico , RNA Viral/biossíntese , Sequências de Repetição em Tandem/fisiologia , Células A549 , Animais , Chlorocebus aethiops , Cricetinae , Culicidae/metabolismo , Culicidae/virologia , Flavivirus/genética , Humanos , RNA Viral/genética , Células Vero
7.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814522

RESUMO

Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses.IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis-acting replication elements (5'-SLA and 5'-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses.


Assuntos
Splicing de RNA , RNA Catalítico/metabolismo , Sequências Reguladoras de Ácido Ribonucleico/genética , Infecção por Zika virus/virologia , Zika virus/genética , Animais , Células Cultivadas , Clonagem Molecular , Cricetinae , DNA Complementar , Regulação Viral da Expressão Gênica , Rim/metabolismo , Rim/virologia , Camundongos Endogâmicos BALB C , RNA Catalítico/genética , Genética Reversa , Carga Viral , Replicação Viral
8.
J Virol ; 90(14): 6538-6548, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27147750

RESUMO

UNLABELLED: Flaviviruses pose a significant threat to both animals and humans. Recently, a novel flavivirus, duck Tembusu virus (DTMUV), was identified to be the causative agent of a serious duck viral disease in Asia. Its rapid spread, expanding host range, and uncertain transmission routes have raised substantial concerns regarding its potential threats to nonavian hosts, including humans. Here, we demonstrate that DTMUV is not pathogenic for nonhuman primates and is highly sensitive to mammal type I interferon (IFN) signaling. In vitro assays demonstrated that DTMUV infected and replicated efficiently in various mammalian cell lines. Further tests in mice demonstrated high neurovirulence and the age-dependent neuroinvasiveness of the virus. In particular, the inoculation of DTMUV into rhesus monkeys did not result in either viremia or apparent clinical symptoms, although DTMUV-specific humoral immune responses were detected. Furthermore, we revealed that although avian IFN failed to inhibit DTMUV in avian cells, DTMUV was more sensitive to the antiviral effects of type I interferon than other known human-pathogenic flaviviruses. Knockout of the type I IFN receptor in mice caused apparent viremia, viscerotropic disease, and mortality, indicating a vital role of IFN signaling in protection against DTMUV infection. Collectively, we provide direct experimental evidence that this novel avian-origin DTMUV possesses a limited capability to establish infection in immunocompetent primates due to its decreased antagonistic activity in the mammal IFN system. Furthermore, our findings highlight the potential risk of DTMUV infection in immunocompromised individuals and warrant studies on the cross-species transmission and pathogenesis of this novel flavivirus. IMPORTANCE: Mosquito-borne flaviviruses comprise a large group of pathogenic and nonpathogenic members. The pathogenic flaviviruses include dengue, West Nile, and Japanese encephalitis viruses, and the nonpathogenic flaviviruses normally persist in a natural cycle and rarely cause disease in humans. A novel flavivirus, DTMUV (also known as duck egg drop syndrome flavivirus [DEDSV]) was identified in 2012 in ducks and then rapidly spread to several Asian countries. This new flavivirus was then shown to infect multiple avian species, resulting in neurological symptoms with unknown routes of transmission. There is public concern regarding its potential transmission from birds to humans and other nonavian hosts. Our present study shows that the mammalian IFN system can efficiently eliminate DTMUV infection and that the emergence of severe DTMUV-associated disease in mammals, especially humans, is unlikely. Currently, DTMUV infection mostly affects avian species.


Assuntos
Antivirais/farmacologia , Patos/virologia , Infecções por Flavivirus/tratamento farmacológico , Flavivirus/patogenicidade , Interferon Tipo I/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Receptores de Interferon/fisiologia , Células A549 , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Feminino , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Células HeLa , Células Hep G2 , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Células Vero
9.
Chemosphere ; 313: 137456, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470352

RESUMO

Municipal solid wastes (MSWs) contain diverse per- and polyfluoroalkyl substances (PFAS), and these substances may leach into leachates, resulting in potential threats to the environment and human health. In this study, leachates from incineration plants with on-site treatment systems were measured for 17 PFAS species, including 13 perfluorocarboxylic acids (PFCAs) and 4 perfluorosulfonic acids (PFSAs). PFAS were detected in all of the raw leachates and finished effluents in concentrations ranging from 7228 to 16,565 ng L-1 and 43 to 184 ng L-1, respectively, with a greater contribution from the short-chain PFAS and PFCAs. The results showed that the existing combined processes (biological treatment and membrane filtration) were effective in decreasing PFAS in the aqueous phase with removal efficiencies over 95%. In addition, correlation analysis suggested that physical entrapment, not biodegradation, was the main means of PFAS reduction in the treatment system. These results filled a gap in the understanding of PFAS occurrence and removal in leachates from incineration plants during the full-scale treatment processes, and demonstrated those leachates were previously under-explored sources of PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Incineração , Resíduos Sólidos/análise , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
10.
Nat Commun ; 14(1): 5541, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684223

RESUMO

Zika virus (ZIKV) infection during pregnancy threatens pregnancy and fetal health. However, the infectivity and pathological effects of ZIKV on placental trophoblast progenitor cells in early human embryos remain largely unknown. Here, using human trophoblast stem cells (hTSCs), we demonstrated that hTSCs were permissive to ZIKV infection, and resistance to ZIKV increased with hTSC differentiation. Combining gene knockout and transcriptome analysis, we demonstrated that the intrinsic expression of AXL and TIM-1, and the absence of potent interferon (IFN)-stimulated genes (ISGs) and IFNs contributed to the high sensitivity of hTSCs to ZIKV. Furthermore, using our newly developed hTSC-derived trophoblast organoid (hTSC-organoid), we demonstrated that ZIKV infection disrupted the structure of mature hTSC-organoids and inhibited syncytialization. Single-cell RNA sequencing (scRNA-seq) further demonstrated that ZIKV infection of hTSC-organoids disrupted the stemness of hTSCs and the proliferation of cytotrophoblast cells (CTBs) and probably led to a preeclampsia (PE) phenotype. Overall, our results clearly demonstrate that hTSCs represent the major target cells of ZIKV, and a reduced syncytialization may result from ZIKV infection of early developing placenta. These findings deepen our understanding of the characteristics and consequences of ZIKV infection of hTSCs in early human embryos.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Trofoblastos , Placenta , Organoides
11.
Cell Discov ; 9(1): 59, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330497

RESUMO

Virus spillover remains a major challenge to public health. A panel of SARS-CoV-2-related coronaviruses have been identified in pangolins, while the infectivity and pathogenicity of these pangolin-origin coronaviruses (pCoV) in humans remain largely unknown. Herein, we comprehensively characterized the infectivity and pathogenicity of a recent pCoV isolate (pCoV-GD01) in human cells and human tracheal epithelium organoids and established animal models in comparison with SARS-CoV-2. pCoV-GD01 showed similar infectivity to SARS-CoV-2 in human cells and organoids. Remarkably, intranasal inoculation of pCoV-GD01 caused severe lung pathological damage in hACE2 mice and could transmit among cocaged hamsters. Interestingly, in vitro neutralization assays and animal heterologous challenge experiments demonstrated that preexisting immunity induced by SARS-CoV-2 infection or vaccination was sufficient to provide at least partial cross-protection against pCoV-GD01 challenge. Our results provide direct evidence supporting pCoV-GD01 as a potential human pathogen and highlight the potential spillover risk.

12.
Nat Commun ; 14(1): 6832, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884553

RESUMO

Increasing evidence shows the African lineage Zika virus (ZIKV) displays a more severe neurovirulence compared to the Asian ZIKV. However, viral determinants and the underlying mechanisms of enhanced virulence phenotype remain largely unknown. Herein, we identify a panel of amino acid substitutions that are unique to the African lineage of ZIKVs compared to the Asian lineage by phylogenetic analysis and sequence alignment. We then utilize reverse genetic technology to generate recombinant ZIKVs incorporating these lineage-specific substitutions based on an infectious cDNA clone of Asian ZIKV. Through in vitro characterization, we discover a mutant virus with a lysine to arginine substitution at position 101 of capsid (C) protein (termed K101R) displays a larger plaque phenotype, and replicates more efficiently in various cell lines. Moreover, K101R replicates more efficiently in mouse brains and induces stronger inflammatory responses than the wild type (WT) virus in neonatal mice. Finally, a combined analysis reveals the K101R substitution promotes the production of mature C protein without affecting its binding to viral RNA. Our study identifies the role of K101R substitution in the C protein in contributing to the enhanced virulent phenotype of the African lineage ZIKV, which expands our understanding of the complexity of ZIKV proteins.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Substituição de Aminoácidos , Filogenia , Replicação Viral/genética
13.
Environ Sci Pollut Res Int ; 29(46): 69588-69598, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35578077

RESUMO

Landfill leachate has been documented as a significant source of trace organic pollutants, comprising an expansive family of per- and polyfluoroalkyl substances (PFAS). This study presents the findings on the distribution of 13 perfluoroalkyl carboxylates (PFCAs) and 4 perfluoroalkyl sulfonates (PFSAs) in leachates from 6 municipal solid waste (MSW) landfills in western China. The total concentrations of 17 PFAS in sampled leachates ranged from 1805 to 43,310 ng/L, and 15 compounds were detected in all samples. The short-chain compounds perfluorobutane sulfonate (PFBS, mean mass fraction 23.1%) and perfluorobutyric acid (PFBA, mean mass fraction 20.6%) were dominant. There were higher PFAS concentrations in leachates from operating landfills (mean: 12,194 ng/L) compared to closed landfills (mean: 2747 ng/L), but there was no significant difference between young (< 10 years) and old landfills (> 10 years). Moderate to weak correlations were observed between PFAS concentrations and leachate properties, e.g., TN, NH4+-N, TOC, and pH. This is the first report on the distribution of PFAS in landfill leachates from western China. The results have identified landfill leachate as an underestimated source of PFAS in the environment and have contributed to a more comprehensive evaluation on PFAS presence across China.


Assuntos
Fluorocarbonos , Eliminação de Resíduos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Fluorocarbonos/análise , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
14.
Microbiol Spectr ; 10(5): e0224622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35980184

RESUMO

The yellow fever (YF) live attenuated vaccine strain 17D (termed 17D) has been widely used for the prevention and control of YF disease. However, 17D retains significant neurovirulence and viscerotropism in mice, which is probably linked to the increased occurrences of serious adverse events following 17D vaccination. Thus, the development of an updated version of the YF vaccine with an improved safety profile is of high priority. Here, we generated a viable bicistronic YF virus (YFV) by incorporating the internal ribosome entry site (IRES) from Encephalomyocarditis virus into an infectious clone of YFV 17D. The resulting recombinant virus, 17D-IRES, exhibited similar replication efficiency to its parental virus (17D) in mammalian cell lines, while it was highly restricted in mosquito cells. Serial passage of 17D-IRES in BHK-21 cells showed good genetic stability. More importantly, in comparison with the parental 17D, 17D-IRES displayed significantly decreased mouse neurovirulence and viscerotropism in type I interferon (IFN)-signaling-deficient and immunocompetent mouse models. Interestingly, 17D-IRES showed enhanced sensitivity to type I IFN compared with 17D. Moreover, immunization with 17D-IRES provided solid protection for mice against a lethal challenge with YFV. These preclinical data support further development of 17D-IRES as an updated version for the approved YF vaccine. This IRES-based attenuation strategy could be also applied to the design of live attenuated vaccines against other mosquito-borne flaviviruses. IMPORTANCE Yellow fever (YF) continually spreads and causes epidemics around the world, posing a great threat to human health. The YF live attenuated vaccine 17D is considered the most efficient vaccine available and helps to successfully control disease epidemics. However, side effects may occur after vaccination, such as viscerotropic disease (YEL-AVD) and neurotropic adverse disease (YEL-AND). Thus, there is an urgent need for a safer YF vaccine. Here, an IRES strategy was employed, and a bicistronic YFV was successfully developed (named 17D-IRES). 17D-IRES showed effective replication and genetic stability in vitro and high attenuation in vivo. Importantly, 17D-IRES induced humoral and cellular immune responses and conferred full protection against lethal YFV challenge. Our study provides data suggesting that 17D-IRES, with its prominent advantages, could be a vaccine candidate against YF. Moreover, this IRES-based bicistronic technology platform represents a promising strategy for developing other live attenuated vaccines against emerging viruses.


Assuntos
Interferon Tipo I , Vacina contra Febre Amarela , Febre Amarela , Camundongos , Humanos , Animais , Febre Amarela/prevenção & controle , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Sítios Internos de Entrada Ribossomal , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/genética , Vírus da Febre Amarela/genética , Antígenos Virais , Interferon Tipo I/genética , Mamíferos/genética
15.
Virology ; 576: 61-68, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174448

RESUMO

SARS-CoV-2 variants have posed significant challenges to the hopes of using ancestral strain-based vaccines to address the risk of breakthrough infection by variants. We designed and developed a bivalent vaccine based on SARS-CoV-2 Alpha and Beta variants (named SCTV01C). SCTV01C antigens were stable at 25 oC for at least 6 months. In the presence of a squalene-based oil-in-water adjuvant SCT-VA02B, SCTV01C showed significant protection efficacy against antigen-matched Beta variant, with favorable safety profiles in rodents. Notably, SCTV01C exhibited cross-neutralization capacity against Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5) in mice, superior to a WT (D614G)-based vaccine, which reinforced our previously published findings that SCTV01C exhibited broad-spectrum neutralizing potencies against over a dozen pre-Omicron variants and the Omicron BA.1 variant. In summary, variant-based multivalent protein vaccine could be a platform approach to address the challenging issues of emerging variants, vaccine hesitancy and the needs of affordable and thermal stable vaccines.


Assuntos
COVID-19 , Vacinas Virais , Camundongos , Humanos , Animais , SARS-CoV-2/genética , Vacinas Combinadas , Vacinas Virais/genética , Esqualeno , COVID-19/prevenção & controle , Anticorpos Antivirais , Água , Anticorpos Neutralizantes
16.
Emerg Microbes Infect ; 11(1): 2350-2358, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069671

RESUMO

Zika virus (ZIKV) is primarily transmitted through mosquito bites and sexual contact, and vertical transmission of ZIKV has also been observed in humans. In addition, ZIKV infection via unknown transmission routes has been frequently reported in clinical settings. However, whether ZIKV can be transmitted via aerosol routes remains unknown. In this study, we demonstrated that aerosolized ZIKV is fully infectious in vitro and in vivo. Remarkably, intratracheal (i.t.) inoculation with aerosolized ZIKV led to rapid viremia and viral secretion in saliva, as well as robust humoral and innate immune responses in guinea pigs. Transcriptome analysis further revealed that the expression of genes related to viral processes, biological regulation and the immune response was significantly changed. Together, our results confirm that aerosolized ZIKV can result in systemic infection and induce both innate and adaptive immune responses in guinea pigs, highlighting the possibility of ZIKV transmission via aerosols.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Cobaias , Humanos , Imunidade Humoral , Transmissão Vertical de Doenças Infecciosas , Viremia , Zika virus/fisiologia
17.
Nat Metab ; 4(1): 29-43, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992299

RESUMO

Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.


Assuntos
COVID-19/complicações , COVID-19/virologia , Glucose/metabolismo , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Proteínas de Membrana/metabolismo , SARS-CoV-2 , Animais , Biomarcadores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Jejum , Expressão Gênica , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Interações Hospedeiro-Patógeno , Humanos , Hiperglicemia/sangue , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética
18.
Cell Res ; 31(1): 25-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262452

RESUMO

Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model. Cryo-EM studies dissected the nature of the P17 epitope, which is SARS-CoV-2 specific and distinctly different from that of H014. High-resolution structure of the SARS-CoV-2 spike in complex with H014 and P17, together with functional investigations revealed that in a two-antibody cocktail, synergistic neutralization was achieved by S1 shielding and conformational locking, thereby blocking receptor attachment and viral membrane fusion, conferring high potency as well as robustness against viral mutation escape. Furthermore, cluster analysis identified a hypothetical 3rd antibody partner for further reinforcing the cocktail as pan-SARS-CoVs therapeutics.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19 , Epitopos/imunologia , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , COVID-19/imunologia , COVID-19/prevenção & controle , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Anticorpos de Cadeia Única/farmacologia , Células Vero
19.
Cell Host Microbe ; 28(1): 124-133.e4, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485164

RESUMO

Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pandemias , Pneumonia Viral , Envelhecimento , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/virologia , COVID-19 , Sistemas CRISPR-Cas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Citocinas/sangue , Técnicas de Introdução de Genes , Pulmão/patologia , Pulmão/virologia , Doenças Pulmonares Intersticiais/patologia , Nariz/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/análise , SARS-CoV-2 , Estômago/virologia , Traqueia/virologia , Carga Viral , Replicação Viral
20.
Sci Adv ; 5(10): eaax7142, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31681849

RESUMO

Zika virus (ZIKV) infection during pregnancy increases the risk of postnatal microcephaly. Neurovascular function provides a homeostatic environment for proper brain development. The major facilitator superfamily domain-containing protein 2 (Mfsd2a) is selectively expressed in human brain microvascular endothelial cells (hBMECs) and is the major transporter mediating the brain uptake of docosahexaenoic acid (DHA). We have discovered a pivotal role for Mfsd2a in the pathogenesis of ZIKV. ZIKV disrupted Mfsd2a both in cultured primary hBMECs and in the neonatal mouse brain. ZIKV envelope (E) protein specifically interacted with Mfsd2a and promoted Mfsd2a polyubiquitination for proteasome-dependent degradation. Infection with ZIKV or ectopic expression of ZIKV E impaired Mfsd2a-mediated DHA uptake. Lipidomic analysis revealed obvious differences in DHA-containing lipids after ZIKV infection. Supplementation with DHA rescued ZIKV-caused growth restriction and microcephaly. Our findings suggest endothelial Mfsd2a as an important pathogenic mediator and supplementation with DHA as a potential therapeutic option for ZIKV infection.


Assuntos
Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Homeostase , Metabolismo dos Lipídeos , Simportadores/metabolismo , Zika virus/fisiologia , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Knockout , Microcefalia/patologia , Microvasos/patologia , Fenótipo , Proteólise , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA