RESUMO
Electrophysiological recordings from freely behaving animals are a widespread and powerful mode of investigation in sleep research. These recordings generate large amounts of data that require sleep stage annotation (polysomnography), in which the data is parcellated according to three vigilance states: awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. Manual and current computational annotation methods ignore intermediate states because the classification features become ambiguous, even though intermediate states contain important information regarding vigilance state dynamics. To address this problem, we have developed "Somnotate"-a probabilistic classifier based on a combination of linear discriminant analysis (LDA) with a hidden Markov model (HMM). First we demonstrate that Somnotate sets new standards in polysomnography, exhibiting annotation accuracies that exceed human experts on mouse electrophysiological data, remarkable robustness to errors in the training data, compatibility with different recording configurations, and an ability to maintain high accuracy during experimental interventions. However, the key feature of Somnotate is that it quantifies and reports the certainty of its annotations. We leverage this feature to reveal that many intermediate vigilance states cluster around state transitions, whereas others correspond to failed attempts to transition. This enables us to show for the first time that the success rates of different types of transition are differentially affected by experimental manipulations and can explain previously observed sleep patterns. Somnotate is open-source and has the potential to both facilitate the study of sleep stage transitions and offer new insights into the mechanisms underlying sleep-wake dynamics.
Assuntos
Fases do Sono , Vigília , Humanos , Camundongos , Animais , Vigília/fisiologia , Fases do Sono/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Polissonografia/métodos , Eletroencefalografia/métodosRESUMO
In this study, we aim to investigate diacylglycerol kinase (DGK) γ expression in developing neural tubes (NTs) and its effects on neural stem cell (NSC) proliferation and migration. Whole-mount in situ hybridization (WMISH) and immunohistochemistry are performed to explore DGKγ localization in developing NTs in vivo. NSCs are treated with sh-DGKγ, R59949, or PMA in vitro. Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and neurosphere formation assay are utilized to evaluate NSC proliferation. Neurosphere migration assay and a transwell chamber assay are used to assess NSC migration. The diacylglycerol (DAG) content is detected via enzyme-linked immunosorbent assay (ELISA). The mRNA expression of DGKγ is detected via quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of DGKγ, protein kinase C (PKC) and phosphorylated PKC (p-PKC) are detected via western blot analysis. The results show that DGKγ mRNA is expressed predominantly in developing NTs. The neuroepithelium in developing NTs is positive for NSC markers, including Nestin, glial fibrillary acidic protein (GFAP), and DGKγ. DGKγ is expressed in the cytoplasm and nucleus of the neuroepithelium and is coexpressed with p-PKCγ and p-PKCδ. The proliferation of NSCs, the number of EdU-positive NSCs, and the number of neurospheres are decreased by sh-DGKγ and R59949 but increased by PMA. There is a shorter migration distance of NSCs and fewer migrated NSCs in the sh-DGKγ, R59949 and PMA groups. DAG content and the p-PKCδ/PKCδ ratio are increased by sh-DGKγ, R59949 and PMA, whereas the p-PKCγ/PKCγ ratio is decreased by PMA. Taken together, our findings indicate that DGKγ facilitates NSC proliferation and migration, which is responsible for the participation of DGK in NT development. DGKγ facilitates NSC migration via the DAG/PKCδ pathway.
RESUMO
Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep-wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state "quality") and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep-wake states.
Assuntos
Glutamato Descarboxilase/metabolismo , Área Pré-Óptica/fisiologia , Sono/fisiologia , Animais , Dexmedetomidina , Eletroencefalografia , Feminino , Homeostase , Masculino , Camundongos , OptogenéticaRESUMO
A soft magnetic elastomer, called a magnetorheological elastomer (MRE), based on a polyacrylamide (PAM) modified carbonyl iron particle (P-CIP) composite and a water-soluble PAM matrix was designed and prepared by the chemical polymerization and crosslinking method. P-CIPs were synthesized by the polymerization of an acrylamide monomer on the CIP surface to improve the oxidation resistance of CIPs and the interaction between the particles and polymer matrix in the MRE. The results obtained from infrared spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) (in a nitrogen atmosphere) show that the coating effect of the polymer on the particle surface is very good. TGA (in an air atmosphere) curves indicate that the P-CIPs show strong oxidation resistance. Meanwhile, the test results obtained for the magnetic properties show that the MRE with P-CIPs has a saturation magnetization (94.7 emu g-1), a relative magnetorheological effect (687.5%), and a Payne effect factor (92%) under the action of a strong magnetic field (1 T). It was also clearly found that these properties are enhanced with increasing magnetic field intensity. Furthermore, the chain effect of magnetic particles under a magnetic field, the strong particle-matrix interaction and its breakdown process with increasing shear strain were discussed in this work.
RESUMO
Circadian biology modulates almost all aspects of mammalian physiology, disease, and response to therapies. Emerging data suggest that circadian biology may significantly affect the mechanisms of susceptibility, injury, recovery, and the response to therapy in stroke. In this review/perspective, we survey the accumulating literature and attempt to connect molecular, cellular, and physiological pathways in circadian biology to clinical consequences in stroke. Accounting for the complex and multifactorial effects of circadian rhythm may improve translational opportunities for stroke diagnostics and therapeutics.
Assuntos
Ritmo Circadiano/fisiologia , Mediadores da Inflamação/fisiologia , Acoplamento Neurovascular/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Animais , Ensaios Clínicos como Assunto/métodos , Humanos , Acidente Vascular Cerebral/diagnósticoRESUMO
Multiple sclerosis (MS) is characterized by neuroinflammation and neurodegeneration, whose precise processes are not fully understood. Diacylglycerol kinase (DGK) isozymes of α, ß, γ and ζ expressed abundantly in the brain and/or the immune system, may be regulatory targets for MS. In this study, we analyzed the four DGK isozymes along the induction, peak and recovery phases in an experimental autoimmune encephalomyelitis (EAE) rat model of MS. The expression of these DGK isozymes and the diacylglycerol (DAG) pathway in the EAE rat brainstems were analyzed by qRT-PCR, immunohistochemistry, immunofluorescence double staining, western blotting and ELISA. Our results showed that the mRNA content of the four DGK isozymes decreased significantly, and their immunoreactivity in myelin sheathes (DGKα, ß) and neurons (DGKγ, ζ) became weaker at the beginning of the induction phase. With the progressive increase in clinical signs, DGKα, DGKγ and DGKζ mRNA increased and DGKß mRNA decreased, and microglia were involved in the formation of perivascular cuffing. In the peak phase, both DGKα and DGKζ were expressed in neurons and inflammatory cells, and DGKζ was also positive in microglia. During the recovery phase, the mRNA content and immunoreactivity of these DGK isozymes generally reached normal levels. Moreover, our results revealed that changes in DAG accumulation and PKCδ phosphorylation were almost the same as those of DGKα and DGKζ mRNA. In summary, the four DGK isozymes are involved in the EAE process. The predominant and broad presence of DGKα and DGKζ suggests that they may regulate the pathological process by attenuating DAG/PKCδ pathway signaling during EAE evolution.
Assuntos
Diacilglicerol Quinase/genética , Encefalomielite Autoimune Experimental/genética , Animais , Diacilglicerol Quinase/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Ratos , Ratos WistarRESUMO
OBJECTIVES: Our primary objective was to better discern features that can differentiate people with 'mixed' symptomatology from those who experience epileptic seizures (ES) or functional/psychogenic nonepileptic seizures (PNES) alone, in a population of patients referred for video-telemetry. We wished to see if we could establish the prevalence of PNES in this population of interest as well as compare both objective (e.g. videotelemetry reports and heart rate measurements) and subjective, patient-centered measures (reported symptoms and experiences). METHODS: Data were sourced from a database of all video-telemetry patients admitted to the John Radcliffe Hospital (Oxford, UK) between 1st Jan 2014 and 31st Jan 2016; video-electroencephalogram (vEEG) reports for the above patients; neurology clinic letters; multidisciplinary Team (MDT) reports; psychology assessments and patient notes for all vEEG patients referred for surgical work up. Mixed cases with a dual ES/PNES diagnosis were carefully evaluated again by the Consultant Neurologist under whose care each respective patient was, through case-by-case evaluation of EEG and telemetry reports. We compared mean heart rate during attacks captured on vEEG, number of physical symptoms reported, episode length, and postictal confusion between the three groups (ES; PNES; ES and PNES (mixed)). We evaluated the groups in terms of demographic and psychological parameters as well as prescription of anti-seizure medication. Pearson correlation significance was examined at 95% level of significance for p-values corrected for multiple comparisons. RESULTS: Overall, mixed cases reported experiencing a significantly lower number of physical symptoms compared to PNES cases (pâ¯=â¯0.018). The heart rate of PNES cases was significantly lower than that of mixed cases during the attacks (pâ¯=â¯0.003). ES patients exhibited the highest heart rate of all three groups and a greater degree of postictal confusion (adjusted pâ¯=â¯0.003 and pâ¯<â¯0.001, respectively) compared to those with PNES. There was no statistically significant difference in episode length between mixed and ES cases, while PNES patients had significantly longer episode duration (pâ¯=â¯0.021) compared to the mixed group. We noted that 81.6% of PNES patients were taking at least one anti-seizure medication. CONCLUSION: Patients with mixed seizures seem to be part of a spectrum between ES and PNES cases. Mixed cases are more similar to the ES group with regard to episode length and number of symptoms reported. In the PNES cohort, we found an over-reporting of ictal symptoms (e.g. palpitations, diaphoresis) disproportionate to recorded heart rate, which is lower in PNES than in epileptic attacks. This seems consistent with PNES cases experiencing a degree of impaired interoceptive processing, as part of a functional disorder spectrum. We noted that there was tendency for overmedication in the PNES group. The need for 'de-prescribing' should be addressed with measures that include better liaison with the community care team. With regard to potential autonomic dysregulation in the mixed cases, it might be interesting to see if vagus nerve stimulation could be accompanied by normalization of cardiovascular physiology parameters for people with both epileptic and psychogenic nonepileptic seizures.
Assuntos
Epilepsia , Transtornos Mentais , Eletroencefalografia , Epilepsia/diagnóstico , Frequência Cardíaca , Humanos , Convulsões/diagnósticoRESUMO
Therapeutic hypothermia (TH) mitigates damage in ischemic stroke models. However, safer and easier TH methods (e.g., pharmacological) are needed to circumvent physical cooling complications. This study evaluated systemic and pharmacologically induced TH using the adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA), with control groups in male Sprague-Dawley rats. CHA was administered intraperitoneally 10 minutes following a 2-hour intraluminal middle cerebral artery occlusion. We used a 1.5 mg/kg induction dose, followed by three 1.0 mg/kg doses every 6 hours for a total of 4 doses, causing 20-24 hours of hypothermia. Animals assigned to physical hypothermia and CHA-hypothermia had similar induction rates and nadir temperatures, but forced cooling lasted â¼6 hours longer compared with CHA-treated animals. The divergence is likely attributable to individual differences in CHA metabolism, which led to varied durations at nadir, whereas physical hypothermia was better regulated. Physical hypothermia significantly reduced infarction (primary endpoint) on day 7 (mean reduction of 36.8 mm3 or 39% reduction; p = 0.021 vs. normothermic animals; Cohen's d = 0.75), whereas CHA-induced hypothermia did not (p = 0.33). Similarly, physical cooling improved neurological function (physical hypothermia median = 0, physical normothermia median = 2; p = 0.008) and CHA-induced cooling did not (p > 0.99). Our findings demonstrate that forced cooling was neuroprotective compared with controls, but prolonged CHA-induced cooling was not neuroprotective.
Assuntos
Adenosina/análogos & derivados , Hipotermia Induzida , Hipotermia , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Masculino , Hipotermia Induzida/métodos , Hipotermia/metabolismo , Ratos Sprague-Dawley , Roedores , Acidente Vascular Cerebral/terapiaRESUMO
The strongest risk factors for Alzheimer's disease (AD) include the χ4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2R47H ( R47H ) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting disease-causing mechanisms. We find that the R47H variant induces neurodegeneration in female APOE4 mice without impacting hippocampal tau load. The combination of APOE4 and R47H amplified tauopathy-induced cell-autonomous microglial cGAS-STING signaling and type-I interferon response, and interferon signaling converged across glial cell types in the hippocampus. APOE4-R47H microglia displayed cGAS- and BAX-dependent upregulation of senescence, showing association between neurotoxic signatures and implicating mitochondrial permeabilization in pathogenesis. By uncovering pathways enhanced by the strongest AD risk factors, our study points to cGAS-STING signaling and associated microglial senescence as potential drivers of AD risk.
RESUMO
The strongest risk factors for late-onset sporadic Alzheimer's disease (AD) include the ε4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2R47H (R47H) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting detrimental disease mechanisms. We find that R47H induces neurodegeneration in 9- to 10-month-old female APOE4 tauopathy mice. The combination of APOE4 and R47H (APOE4-R47H) worsened hyperphosphorylated tau pathology in the frontal cortex and amplified tauopathy-induced microglial cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling and downstream interferon response. APOE4-R47H microglia displayed cGAS- and BAX-dependent upregulation of senescence, showing association between neurotoxic signatures and implicating mitochondrial permeabilization in pathogenesis. By uncovering pathways enhanced by the strongest AD risk factors, our study points to cGAS-STING signaling and associated microglial senescence as potential drivers of AD risk.
RESUMO
DNA sensing is a pivotal component of the innate immune system that is responsible for detecting mislocalized DNA and triggering downstream inflammatory pathways. Among the DNA sensors, cyclic GMP-AMP synthase (cGAS) is a primary player in detecting cytosolic DNA, including foreign DNA from pathogens and self-DNA released during cellular damage, culminating in a type I interferon (IFN-I) response through stimulator of interferon genes (STING) activation. IFN-I cytokines are essential in mediating neuroinflammation, which is widely observed in CNS injury, neurodegeneration, and aging, suggesting an upstream role for the cGAS DNA sensing pathway. In this review, we summarize the latest developments on the cGAS-STING DNA-driven immune response in various neurological diseases and conditions. Our review covers the current understanding of the molecular mechanisms of cGAS activation and highlights cGAS-STING signaling in various cell types of central and peripheral nervous systems, such as resident brain immune cells, neurons, and glial cells. We then discuss the role of cGAS-STING signaling in different neurodegenerative conditions, including tauopathies, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as aging and senescence. Finally, we lay out the current advancements in research and development of cGAS inhibitors and assess the prospects of targeting cGAS and STING as therapeutic strategies for a wide spectrum of neurological diseases.
Assuntos
Interferon Tipo I , Doenças do Sistema Nervoso , Humanos , Transdução de Sinais/fisiologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismoRESUMO
Dengue is prevalent in tropical and subtropical regions. As an arbovirus disease, it is mainly transmitted by Aedes aegypti and Aedes albopictus. According to the previous studies, temperature is closely related to the survival of Aedes mosquitoes, the proliferation of dengue virus (DENV) and the vector competence of Aedes to transmit DENV. This review describes the correlations between temperature and dengue epidemics, and explores the potential reasons including the distribution and development of Aedes mosquitoes, the structure of DENV, and the vector competence of Aedes mosquitoes. In addition, the immune and metabolic mechanism are discussed on how temperature affects the vector competence of Aedes mosquitoes to transmit DENV.
Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Temperatura , Mosquitos VetoresRESUMO
[This corrects the article DOI: 10.3389/fcimb.2023.1242173.].
RESUMO
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
RESUMO
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
RESUMO
Pathological hallmarks of Alzheimer's disease (AD) precede clinical symptoms by years, indicating a period of cognitive resilience before the onset of dementia. Here, we report that activation of cyclic GMP-AMP synthase (cGAS) diminishes cognitive resilience by decreasing the neuronal transcriptional network of myocyte enhancer factor 2c (MEF2C) through type I interferon (IFN-I) signaling. Pathogenic tau activates cGAS and IFN-I responses in microglia, in part mediated by cytosolic leakage of mitochondrial DNA. Genetic ablation of Cgas in mice with tauopathy diminished the microglial IFN-I response, preserved synapse integrity and plasticity and protected against cognitive impairment without affecting the pathogenic tau load. cGAS ablation increased, while activation of IFN-I decreased, the neuronal MEF2C expression network linked to cognitive resilience in AD. Pharmacological inhibition of cGAS in mice with tauopathy enhanced the neuronal MEF2C transcriptional network and restored synaptic integrity, plasticity and memory, supporting the therapeutic potential of targeting the cGAS-IFN-MEF2C axis to improve resilience against AD-related pathological insults.
Assuntos
Microglia , Nucleotidiltransferases , Proteínas tau , Animais , Camundongos , Cognição , Imunidade Inata , Interferons , Fatores de Transcrição MEF2/genética , Microglia/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismoRESUMO
Fe3O4@ZnO nanocomposites (NCs) were synthesized to improve the stability of the wormlike micelle (WLM) network structure of viscoelastic surfactant (VES) fracturing fluid and were characterized by Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Then, an NC-enhanced viscoelastic surfactant solution as a fracturing fluid (NC-VES) was prepared, and its properties, including settlement stability, interactions between NCs and WLMs, proppant-transporting performance and gel-breaking properties, were systematically studied. More importantly, the influences of the NC concentration, shear rate, temperature and pH level on the stability of NC-VES were systematically investigated. The experimental results show that the NC-VES with a suitable content of NCs (0.1 wt.%) shows superior stability at 95 °C or at a high shear rate. Meanwhile, the NC-VES has an acceptable wide pH stability range of 6-9. In addition, the NC-VES possesses good sand-carrying performance and gel-breaking properties, while the NCs can be easily separated and recycled by applying a magnetic field. The temperature-resistant, stable and environmentally friendly fracturing fluid opens an opportunity for the future hydraulic fracturing of unconventional reservoirs.
RESUMO
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Assuntos
Medicago truncatula , Rhizobium , Rhizobium/fisiologia , Simbiose/fisiologia , Cinesinas/genética , Vacúolos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , MorfogêneseRESUMO
STUDY OBJECTIVES: Torpor is a regulated and reversible state of metabolic suppression used by many mammalian species to conserve energy. Whereas the relationship between torpor and sleep has been well-studied in seasonal hibernators, less is known about the effects of fasting-induced torpor on states of vigilance and brain activity in laboratory mice. METHODS: Continuous monitoring of electroencephalogram (EEG), electromyogram (EMG), and surface body temperature was undertaken in adult, male C57BL/6 mice over consecutive days of scheduled restricted feeding. RESULTS: All animals showed bouts of hypothermia that became progressively deeper and longer as fasting progressed. EEG and EMG were markedly affected by hypothermia, although the typical electrophysiological signatures of non-rapid eye movement (NREM) sleep, rapid eye movement (REM) sleep, and wakefulness enabled us to perform vigilance-state classification in all cases. Consistent with previous studies, hypothermic bouts were initiated from a state indistinguishable from NREM sleep, with EEG power decreasing gradually in parallel with decreasing surface body temperature. During deep hypothermia, REM sleep was largely abolished, and we observed shivering-associated intense bursts of muscle activity. CONCLUSIONS: Our study highlights important similarities between EEG signatures of fasting-induced torpor in mice, daily torpor in Djungarian hamsters and hibernation in seasonally hibernating species. Future studies are necessary to clarify the effects on fasting-induced torpor on subsequent sleep.
Assuntos
Torpor , Vigília , Animais , Cricetinae , Jejum , Masculino , Camundongos , Camundongos Endogâmicos C57BL , SonoRESUMO
Precipitation regime and seedling emergence time both influence plant growth and reproduction. However, little attention has been given to the effects of these combined factors on the reproductive strategy of Chloris virgata, which is a vital species in Songnen grassland. Here, we simulated the changes in the precipitation regime and seedling emergence time to evaluate tiller traits and seed production. The results showed that tiller number behaved similarly among three precipitation regimes when sowed on 15 May (T1), while it increased significantly with precipitation regimes when sowed on 15 June (T2) and 15 July (T3). Tiller number decreased significantly with the seedling emergence time under the same water supply treatment. The proportional allocation of reproductive tiller number to total tiller number was significantly higher at T3 than at T1 and T2. Seed number remained similar under different precipitation regimes at T2 and T3, whereas it was significantly lower under low precipitation than under other water levels at T1. Seed number reached the maximum values at T2 under the same level of precipitation treatment. Seed size was significantly lower under low precipitation compared to other water supply treatments and the lowest values in seed size, about 0.5 mg, occurred at T2 under all the precipitation regimes. The lowest values in spike number were under low precipitation at all seedling emergence times. Seed yield exhibited similar trends with seed size under different precipitation regimes, while the greatest gains in these values were at T1 under all the precipitation regimes. Our findings showed that simulated precipitation regimes and seedling emergence time affected the reproductive strategy of C. virgata. Typical and high precipitation, as well as early seedling emergence, will improve the seed yield and seed quality in this species.