Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 615(7953): 697-704, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890230

RESUMO

Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Imunoterapia , Melanoma , Humanos , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígenos HLA/imunologia , Metástase Neoplásica , Medicina de Precisão , Edição de Genes , Sistemas CRISPR-Cas , Mutação
2.
Cell ; 150(2): 264-78, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817890

RESUMO

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Assuntos
Evolução Clonal , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Idoso , Análise Mutacional de DNA , Progressão da Doença , Feminino , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Recidiva , Pele/metabolismo , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 116(47): 23662-23670, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685621

RESUMO

The impact of intratumoral heterogeneity (ITH) and the resultant neoantigen landscape on T cell immunity are poorly understood. ITH is a widely recognized feature of solid tumors and poses distinct challenges related to the development of effective therapeutic strategies, including cancer neoantigen vaccines. Here, we performed deep targeted DNA sequencing of multiple metastases from melanoma patients and observed ubiquitous sharing of clonal and subclonal single nucleotide variants (SNVs) encoding putative HLA class I-restricted neoantigen epitopes. However, spontaneous antitumor CD8+ T cell immunity in peripheral blood and tumors was restricted to a few clonal neoantigens featuring an oligo-/monoclonal T cell-receptor (TCR) repertoire. Moreover, in various tumors of the 4 patients examined, no neoantigen-specific TCR clonotypes were identified despite clonal neoantigen expression. Mature dendritic cell (mDC) vaccination with tumor-encoded amino acid-substituted (AAS) peptides revealed diverse neoantigen-specific CD8+ T responses, each composed of multiple TCR clonotypes. Isolation of T cell clones by limiting dilution from tumor-infiltrating lymphocytes (TILs) permitted functional validation regarding neoantigen specificity. Gene transfer of TCRαß heterodimers specific for clonal neoantigens confirmed correct TCR clonotype assignments based on high-throughput TCRBV CDR3 sequencing. Our findings implicate immunological ignorance of clonal neoantigens as the basis for ineffective T cell immunity to melanoma and support the concept that therapeutic vaccination, as an adjunct to checkpoint inhibitor treatment, is required to increase the breadth and diversity of neoantigen-specific CD8+ T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Subpopulações de Linfócitos T/imunologia , Substituição de Aminoácidos , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Células Clonais , DNA de Neoplasias/genética , Células Dendríticas/imunologia , Antígenos HLA/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/secundário , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Neoplasias Retroperitoneais/imunologia , Neoplasias Retroperitoneais/secundário , Análise de Sequência de DNA , Especificidade do Receptor de Antígeno de Linfócitos T , Evasão Tumoral , Vacinação
4.
Nature ; 518(7540): 552-555, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25487151

RESUMO

Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3-6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53(+/-) haematopoietic stem/progenitor cells (HSPCs), the Tp53(+/-) HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.


Assuntos
Linhagem da Célula/genética , Genes p53/genética , Leucemia Mieloide Aguda/induzido quimicamente , Leucemia Mieloide Aguda/genética , Mutação/genética , Alelos , Animais , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Células Clonais , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Etilnitrosoureia/farmacologia , Evolução Molecular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Heterozigoto , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Modelos Genéticos , Mutação/efeitos dos fármacos
5.
Nature ; 515(7528): 577-81, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428507

RESUMO

The immune system influences the fate of developing cancers by not only functioning as a tumour promoter that facilitates cellular transformation, promotes tumour growth and sculpts tumour cell immunogenicity, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion. Yet, clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer-induced immunosuppression. In many individuals, immunosuppression is mediated by cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), two immunomodulatory receptors expressed on T cells. Monoclonal-antibody-based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits-including durable responses--to patients with different malignancies. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Here we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T-cell rejection antigens following anti-PD-1 and/or anti-CTLA-4 therapy of mice bearing progressively growing sarcomas, and we show that therapeutic synthetic long-peptide vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Although mutant tumour-antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with anti-PD-1 and/or anti-CTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles, rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens are not only important targets of checkpoint blockade therapy, but they can also be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Pontos de Checagem do Ciclo Celular/imunologia , Imunoterapia , Sarcoma/terapia , Animais , Epitopos/genética , Masculino , Camundongos , Sarcoma/imunologia , Vacinas Sintéticas/uso terapêutico
6.
Genet Med ; 21(4): 972-981, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287923

RESUMO

PURPOSE: Following automated variant calling, manual review of aligned read sequences is required to identify a high-quality list of somatic variants. Despite widespread use in analyzing sequence data, methods to standardize manual review have not been described, resulting in high inter- and intralab variability. METHODS: This manual review standard operating procedure (SOP) consists of methods to annotate variants with four different calls and 19 tags. The calls indicate a reviewer's confidence in each variant and the tags indicate commonly observed sequencing patterns and artifacts that inform the manual review call. Four individuals were asked to classify variants prior to, and after, reading the SOP and accuracy was assessed by comparing reviewer calls with orthogonal validation sequencing. RESULTS: After reading the SOP, average accuracy in somatic variant identification increased by 16.7% (p value = 0.0298) and average interreviewer agreement increased by 12.7% (p value < 0.001). Manual review conducted after reading the SOP did not significantly increase reviewer time. CONCLUSION: This SOP supports and enhances manual somatic variant detection by improving reviewer accuracy while reducing the interreviewer variability for variant calling and annotation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Mutação/genética , Neoplasias/genética , Software , Algoritmos , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência
7.
Nature ; 482(7385): 400-4, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22318521

RESUMO

Cancer immunoediting, the process by which the immune system controls tumour outgrowth and shapes tumour immunogenicity, is comprised of three phases: elimination, equilibrium and escape. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. A central tenet of cancer immunoediting is that T-cell recognition of tumour antigens drives the immunological destruction or sculpting of a developing cancer. However, our current understanding of tumour antigens comes largely from analyses of cancers that develop in immunocompetent hosts and thus may have already been edited. Little is known about the antigens expressed in nascent tumour cells, whether they are sufficient to induce protective antitumour immune responses or whether their expression is modulated by the immune system. Here, using massively parallel sequencing, we characterize expressed mutations in highly immunogenic methylcholanthrene-induced sarcomas derived from immunodeficient Rag2(-/-) mice that phenotypically resemble nascent primary tumour cells. Using class I prediction algorithms, we identify mutant spectrin-ß2 as a potential rejection antigen of the d42m1 sarcoma and validate this prediction by conventional antigen expression cloning and detection. We also demonstrate that cancer immunoediting of d42m1 occurs via a T-cell-dependent immunoselection process that promotes outgrowth of pre-existing tumour cell clones lacking highly antigenic mutant spectrin-ß2 and other potential strong antigens. These results demonstrate that the strong immunogenicity of an unedited tumour can be ascribed to expression of highly antigenic mutant proteins and show that outgrowth of tumour cells that lack these strong antigens via a T-cell-dependent immunoselection process represents one mechanism of cancer immunoediting.


Assuntos
Exoma/genética , Exoma/imunologia , Vigilância Imunológica/imunologia , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T/imunologia , Algoritmos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Masculino , Metilcolantreno , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Modelos Imunológicos , Neoplasias/induzido quimicamente , Neoplasias/patologia , Reprodutibilidade dos Testes , Sarcoma/induzido quimicamente , Sarcoma/genética , Sarcoma/imunologia , Sarcoma/patologia
8.
Blood ; 125(4): 619-28, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25416276

RESUMO

Genome sequencing studies of patient samples have implicated the involvement of various components of the epigenetic machinery in myeloid diseases, including the de novo DNA methyltransferase DNMT3A. We have recently shown that Dnmt3a is essential for hematopoietic stem cell differentiation. Here, we investigated the effect of loss of Dnmt3a on hematopoietic transformation by forcing the normally quiescent hematopoietic stem cells to divide in vivo. Mice transplanted with Dnmt3a-null bone marrow in the absence of wildtype support cells succumbed to bone marrow failure (median survival, 328 days) characteristic of myelodysplastic syndromes with symptoms including anemia, neutropenia, bone marrow hypercellularity, and splenomegaly with myeloid infiltration. Two out of 25 mice developed myeloid leukemia with >20%blasts in the blood and bone marrow. Four out of 25 primary mice succumbed to myeloproliferative disorders, some of which progressed to secondary leukemia after long latency. Exome sequencing identified cooperating c-Kit mutations found only in the leukemic samples. Ectopic introduction of c-Kit variants into a Dnmt3a-deficient background produced acute leukemia with a short latency (median survival, 67 days). Our data highlight crucial roles of Dnmt3a in normal and malignant hematopoiesis and suggest that a major role for this enzyme is to facilitate developmental progression of progenitor cells at multiple decision checkpoints.


Assuntos
Crise Blástica/mortalidade , Medula Óssea/enzimologia , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , DNA (Citosina-5-)-Metiltransferases , Células-Tronco Hematopoéticas/enzimologia , Leucemia Mieloide Aguda/enzimologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Crise Blástica/genética , Crise Blástica/patologia , Medula Óssea/patologia , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , DNA Metiltransferase 3A , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas c-kit/genética
9.
PLoS Comput Biol ; 11(7): e1004274, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26158448

RESUMO

In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.


Assuntos
Mapeamento Cromossômico/métodos , Genoma Humano/genética , Bases de Conhecimento , Modelos Genéticos , Análise de Sequência de DNA/métodos , Interface Usuário-Computador , Algoritmos , Simulação por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Humanos , Alinhamento de Sequência/métodos
10.
Blood ; 121(9): 1633-43, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23297133

RESUMO

Acute myeloid leukemia (AML) is characterized by dysregulated gene expression and abnormal patterns of DNA methylation; the relationship between these events is unclear. Many AML patients are now being treated with hypomethylating agents, such as decitabine (DAC), although the mechanisms by which it induces remissions remain unknown. The goal of this study was to use a novel stromal coculture assay that can expand primary AML cells to identify the immediate changes induced by DAC with a dose (100nM) that decreases total 5-methylcytosine content and reactivates imprinted genes (without causing myeloid differentiation, which would confound downstream genomic analyses). Using array-based technologies, we found that DAC treatment caused global hypomethylation in all samples (with a preference for regions with higher levels of baseline methylation), yet there was limited correlation between changes in methylation and gene expression. Moreover, the patterns of methylation and gene expression across the samples were primarily determined by the intrinsic properties of the primary cells, rather than DAC treatment. Although DAC induces hypomethylation, we could not identify canonical target genes that are altered by DAC in primary AML cells, suggesting that the mechanism of action of DAC is more complex than previously recognized.


Assuntos
Azacitidina/análogos & derivados , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/genética , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/administração & dosagem , Azacitidina/farmacologia , Células Cultivadas , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Decitabina , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Genoma Humano/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Análise em Microsséries , Cultura Primária de Células , Fatores de Tempo
11.
JAMA ; 314(8): 811-22, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26305651

RESUMO

IMPORTANCE: Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES: To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS: Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES: Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES: Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS: Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5% of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. [table: see text]. CONCLUSIONS AND RELEVANCE: The detection of persistent leukemia-associated mutations in at least 5% of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML.


Assuntos
Quimioterapia de Indução , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea , Citarabina/administração & dosagem , Daunorrubicina/administração & dosagem , Intervalo Livre de Doença , Feminino , Genoma Humano , Humanos , Idarubicina/administração & dosagem , Leucemia Mieloide Aguda/mortalidade , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Polimorfismo Genético , Prognóstico , RNA Mensageiro/análise , Recidiva , Análise de Sequência de RNA/métodos
12.
ArXiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38947921

RESUMO

Background: Neoantigen targeting therapies including personalized vaccines have shown promise in the treatment of cancers, particularly when used in combination with checkpoint blockade therapy. At least 100 clinical trials involving these therapies are underway globally. Accurate identification and prioritization of neoantigens is highly relevant to designing these trials, predicting treatment response, and understanding mechanisms of resistance. With the advent of massively parallel DNA and RNA sequencing technologies, it is now possible to computationally predict neoantigens based on patient-specific variant information. However, numerous factors must be considered when prioritizing neoantigens for use in personalized therapies. Complexities such as alternative transcript annotations, various binding, presentation and immunogenicity prediction algorithms, and variable peptide lengths/registers all potentially impact the neoantigen selection process. There has been a rapid development of computational tools that attempt to account for these complexities. While these tools generate numerous algorithmic predictions for neoantigen characterization, results from these pipelines are difficult to navigate and require extensive knowledge of the underlying tools for accurate interpretation. This often leads to over-simplification of pipeline outputs to make them tractable, for example limiting prediction to a single RNA isoform or only summarizing the top ranked of many possible peptide candidates. In addition to variant detection, gene expression and predicted peptide binding affinities, recent studies have also demonstrated the importance of mutation location, allele-specific anchor locations, and variation of T-cell response to long versus short peptides. Due to the intricate nature and number of salient neoantigen features, presenting all relevant information to facilitate candidate selection for downstream applications is a difficult challenge that current tools fail to address. Results: We have created pVACview, the first interactive tool designed to aid in the prioritization and selection of neoantigen candidates for personalized neoantigen therapies including cancer vaccines. pVACview has a user-friendly and intuitive interface where users can upload, explore, select and export their neoantigen candidates. The tool allows users to visualize candidates across three different levels, including variant, transcript and peptide information. Conclusions: pVACview will allow researchers to analyze and prioritize neoantigen candidates with greater efficiency and accuracy in basic and translational settings The application is available as part of the pVACtools pipeline at pvactools.org and as an online server at pvacview.org.

13.
Blood Adv ; 8(15): 4035-4049, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38713894

RESUMO

ABSTRACT: Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that "polyvalent" vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by the alignment of B-cell receptor (BCR) CDR3 regions from RNA-seq data, grouping at the protein level, and comparison with the BCR repertoire from healthy individuals using RNA-seq data. An average of 52 somatic mutations per patient (range, 2-172) were identified, and ≥2 (median, 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all 4 patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field. This trial was registered at www.ClinicalTrials.gov as #NCT03121677.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Linfoma Folicular , Medicina de Precisão , Humanos , Linfoma Folicular/terapia , Linfoma Folicular/imunologia , Linfoma Folicular/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Medicina de Precisão/métodos , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Sequenciamento do Exoma , Mutação
14.
N Engl J Med ; 363(25): 2424-33, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21067377

RESUMO

BACKGROUND: The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS: Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS: A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS: DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.).


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Metilação de DNA , DNA Metiltransferase 3A , Análise Mutacional de DNA/métodos , Feminino , Mutação da Fase de Leitura , Expressão Gênica , Humanos , Cariotipagem , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Técnicas de Amplificação de Ácido Nucleico , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
15.
Sci Immunol ; 8(82): eabg2200, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37027480

RESUMO

Neoantigens are tumor-specific peptide sequences resulting from sources such as somatic DNA mutations. Upon loading onto major histocompatibility complex (MHC) molecules, they can trigger recognition by T cells. Accurate neoantigen identification is thus critical for both designing cancer vaccines and predicting response to immunotherapies. Neoantigen identification and prioritization relies on correctly predicting whether the presenting peptide sequence can successfully induce an immune response. Because most somatic mutations are single-nucleotide variants, changes between wild-type and mutated peptides are typically subtle and require cautious interpretation. A potentially underappreciated variable in neoantigen prediction pipelines is the mutation position within the peptide relative to its anchor positions for the patient's specific MHC molecules. Whereas a subset of peptide positions are presented to the T cell receptor for recognition, others are responsible for anchoring to the MHC, making these positional considerations critical for predicting T cell responses. We computationally predicted anchor positions for different peptide lengths for 328 common HLA alleles and identified unique anchoring patterns among them. Analysis of 923 tumor samples shows that 6 to 38% of neoantigen candidates are potentially misclassified and can be rescued using allele-specific knowledge of anchor positions. A subset of anchor results were orthogonally validated using protein crystallography structures. Representative anchor trends were experimentally validated using peptide-MHC stability assays and competition binding assays. By incorporating our anchor prediction results into neoantigen prediction pipelines, we hope to formalize, streamline, and improve the identification process for relevant clinical studies.


Assuntos
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Linfócitos T , Mutação , Peptídeos/genética
16.
Cancer Immunol Res ; 8(3): 409-420, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31907209

RESUMO

Identification of neoantigens is a critical step in predicting response to checkpoint blockade therapy and design of personalized cancer vaccines. This is a cross-disciplinary challenge, involving genomics, proteomics, immunology, and computational approaches. We have built a computational framework called pVACtools that, when paired with a well-established genomics pipeline, produces an end-to-end solution for neoantigen characterization. pVACtools supports identification of altered peptides from different mechanisms, including point mutations, in-frame and frameshift insertions and deletions, and gene fusions. Prediction of peptide:MHC binding is accomplished by supporting an ensemble of MHC Class I and II binding algorithms within a framework designed to facilitate the incorporation of additional algorithms. Prioritization of predicted peptides occurs by integrating diverse data, including mutant allele expression, peptide binding affinities, and determination whether a mutation is clonal or subclonal. Interactive visualization via a Web interface allows clinical users to efficiently generate, review, and interpret results, selecting candidate peptides for individual patient vaccine designs. Additional modules support design choices needed for competing vaccine delivery approaches. One such module optimizes peptide ordering to minimize junctional epitopes in DNA vector vaccines. Downstream analysis commands for synthetic long peptide vaccines are available to assess candidates for factors that influence peptide synthesis. All of the aforementioned steps are executed via a modular workflow consisting of tools for neoantigen prediction from somatic alterations (pVACseq and pVACfuse), prioritization, and selection using a graphical Web-based interface (pVACviz), and design of DNA vector-based vaccines (pVACvector) and synthetic long peptide vaccines. pVACtools is available at http://www.pvactools.org.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Biologia Computacional/métodos , Mineração de Dados , Neoplasias/imunologia , Redes Neurais de Computação , Algoritmos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Inteligência Artificial/normas , Vacinas Anticâncer/administração & dosagem , Humanos , Imunoterapia/métodos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Software
17.
Nat Genet ; 51(1): 175-179, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510237

RESUMO

Recent efforts to design personalized cancer immunotherapies use predicted neoantigens, but most neoantigen prediction strategies do not consider proximal (nearby) variants that alter the peptide sequence and may influence neoantigen binding. We evaluated somatic variants from 430 tumors to understand how proximal somatic and germline alterations change the neoantigenic peptide sequence and also affect neoantigen binding predictions. On average, 241 missense somatic variants were analyzed per sample. Of these somatic variants, 5% had one or more in-phase missense proximal variants. Without incorporating proximal variant correction for major histocompatibility complex class I neoantigen peptides, the overall false discovery rate (incorrect neoantigens predicted) and the false negative rate (strong-binding neoantigens missed) across peptides of lengths 8-11 were estimated as 0.069 (6.9%) and 0.026 (2.6%), respectively.


Assuntos
Antígenos de Neoplasias/genética , Variação Genética/genética , Neoplasias/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoterapia/métodos
18.
Nat Commun ; 9(1): 4850, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429476

RESUMO

The original version of this Article contained errors in the depiction of confidence intervals in the NF1 BCSS data illustrated in Figure 3b. These have now been corrected in both the PDF and HTML versions of the Article. The incorrect version of Figure 3b is presented in the associated Author Correction.

19.
Nat Commun ; 9(1): 3476, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181556

RESUMO

Here we report targeted sequencing of 83 genes using DNA from primary breast cancer samples from 625 postmenopausal (UBC-TAM series) and 328 premenopausal (MA12 trial) hormone receptor-positive (HR+) patients to determine interactions between somatic mutation and prognosis. Independent validation of prognostic interactions was achieved using data from the METABRIC study. Previously established associations between MAP3K1 and PIK3CA mutations with luminal A status/favorable prognosis and TP53 mutations with Luminal B/non-luminal tumors/poor prognosis were observed, validating the methodological approach. In UBC-TAM, NF1 frame-shift nonsense (FS/NS) mutations were also a poor outcome driver that was validated in METABRIC. For MA12, poor outcome associated with PIK3R1 mutation was also reproducible. DDR1 mutations were strongly associated with poor prognosis in UBC-TAM despite stringent false discovery correction (q = 0.0003). In conclusion, uncommon recurrent somatic mutations should be further explored to create a more complete explanation of the highly variable outcomes that typifies ER+ breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Mutação , Adulto , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase , Estudos de Coortes , Receptor com Domínio Discoidina 1/genética , Feminino , Humanos , MAP Quinase Quinase Quinase 1/genética , Pessoa de Meia-Idade , Neurofibromina 1/genética , Fosfatidilinositol 3-Quinases/genética , Pós-Menopausa , Prognóstico , Receptores de Estrogênio/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA