Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 242(6): 1411-1419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613669

RESUMO

Force steadiness can be influenced by visual feedback as well as presence of a cognitive tasks and potentially differs with age and sex. This study determined the impact of altered visual feedback on force steadiness in the presence of a difficult cognitive challenge in young and older men and women. Forty-nine young (19-30 yr; 25 women, 24 men) and 25 older (60-85 yr; 15 women; 10 men) performed low force (5% of maximum) static contractions with the elbow flexor muscles in the presence and absence of a cognitive challenge (counting backwards by 13) either with low or high visual feedback gain. The cognitive challenge reduced force steadiness (increased force fluctuation amplitude) particularly in women (cognitive challenge × sex: P < 0.05) and older individuals (cognitive challenge × age: P < 0.05). Force steadiness improved with high-gain visual feedback compared with low-gain visual feedback (P < 0.01) for all groups (all interactions: P > 0.05). Manipulation of visual feedback had no influence on the reduced force steadiness in presence of the cognitive challenge for all groups (all P > 0.05). These findings indicate that older individuals and women have greater risk of impaired motor performance of the upper extremity if steadiness is required during a low-force static contraction. Manipulation of visual feedback had minimal effects on the reduced force steadiness in presence of a difficult cognitive challenge.


Assuntos
Envelhecimento , Cognição , Retroalimentação Sensorial , Humanos , Feminino , Masculino , Idoso , Adulto , Envelhecimento/fisiologia , Adulto Jovem , Retroalimentação Sensorial/fisiologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Cognição/fisiologia , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Contração Muscular/fisiologia
2.
Exerc Sport Sci Rev ; 51(3): 85-95, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057897

RESUMO

Sex hormone concentrations, particularly testosterone, are primary determinants of sex-based differences in athletic and sports performance, and this relationship may inform fair competition and participation for athletes. This article describes the sex-based dichotomy in testosterone and the implications for sex-based differences in individual sports performance, including factors that relate to athletic performance for transgender individuals, and areas of future investigation.


Assuntos
Desempenho Atlético , Pessoas Transgênero , Humanos , Feminino , Masculino , Caracteres Sexuais , Atletas , Testosterona
3.
Child Psychiatry Hum Dev ; 54(1): 34-50, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34347227

RESUMO

Early exposure to maternal depression is a key risk factor for child mental illness (MI), but there are limited programs that interrupt intergenerational transmission. The BRIDGE "Building Regulation in Dual Generations" Program treats maternal MI using Dialectical Behavior Therapy Skills with a paired curriculum that promotes non-reactive and emotionally validating parenting designed to improve child mental health and ultimately prevent MI. The pilot feasibility trial (n = 28 dyads) included mothers and their preschool-aged children. The 20-week program was completed in a group-based format using mixed methods questionnaires and interviews. Results indicate high feasibility and acceptability (86% retention). Consistent improvements were seen across program targets and outcomes including maternal depression (d = 1.02) and child mental health (d = 1.08), with clinically significant symptom reductions for 85% of clients. Mothers with higher adversity exhibited greater reductions in parenting stress. Qualitative results highlighted efficacy in promoting positive parent-child relationships, rewarding parenting experiences, competence, and child development. Evidence suggests high feasibility and accessibility for BRIDGE in addressing intergenerational mental health needs. There was strong satisfaction with the program material and efficacy across key outcomes. BRIDGE holds promise for offering a transdiagnostic approach to preventing child MI in families of at-risk preschool aged children.


Assuntos
Terapia do Comportamento Dialético , Poder Familiar , Pré-Escolar , Feminino , Humanos , Estudos de Viabilidade , Mães/psicologia , Relações Pais-Filho , Poder Familiar/psicologia , Projetos Piloto
4.
Eur J Appl Physiol ; 121(5): 1389-1404, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33616753

RESUMO

PURPOSE: The aim of this study was to determine the local and systemic effects of isometric and concentric muscle contractions on experimental pain and performance fatigability in people with and without fibromyalgia. METHODS: Forty-seven fibromyalgia (FM: 51.3 ± 12.3 year) and 47 control (CON: 52.5 ± 14.7 year) participants performed submaximal isometric and concentric exercise for 10 min with the right elbow flexors. Assessments before and after exercise included pressure pain thresholds (PPT) of the biceps and quadriceps, central pain summation, self-reported exercising arm and whole-body pain, and maximal voluntary isometric contraction (MVIC) of the right elbow flexors and left handgrip. RESULTS: People with FM experienced greater reductions in local fatigue (right elbow flexor MVIC: CON: - 4.0 ± 6.7%, FM: - 9.8 ± 13.8%; p = 0.013) and similar reductions in systemic fatigue (left handgrip MVIC: - 6.5 ± 10.2%; p < 0.001) as CON participants, which were not different by contraction type nor related to baseline clinical pain, perceived fatigue, or reported pain with exercise. Following exercise both groups reported an increase in PPTs at the biceps (pre: 205.5 ± 100.3 kPa, post: 219.0 ± 109.3 kPa, p = 0.004) only and a decrease in central pain summation (pre: 6.8 ± 2.9, post: 6.5 ± 2.9; p = 0.013). FM reported greater exercising arm pain following exercise (CON: 0.7 ± 1.3, FM: 2.9 ± 2.3; p < 0.001), and both groups reported greater arm pain following concentric (isometric: 1.4 ± 2.0, concentric: 2.2 ± 2.9; p = 0.001) than isometric exercise. Neither group reported an increase in whole-body pain following exercise. CONCLUSION: People with FM experienced greater performance fatigability in the exercising muscle compared to CON that was not related to central mechanisms of fatigue or pain. These results suggest changes in performance fatigability in FM may be due to differences occurring at the muscular level. TRIAL REGISTRATION #: NCT #: NCT03778385, December 19, 2018, retrospectively registered. IRB#: HR-3035.


Assuntos
Fibromialgia/prevenção & controle , Fibromialgia/fisiopatologia , Manejo da Dor/métodos , Treinamento Resistido/métodos , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Força da Mão/fisiologia , Humanos , Contração Isométrica/fisiologia , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Medição da Dor
5.
Am J Physiol Cell Physiol ; 318(6): C1238-C1251, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348175

RESUMO

Age-induced declines in skeletal muscle contractile function have been attributed to multiple cellular factors, including lower peak force (Po), decreased Ca2+ sensitivity, and reduced shortening velocity (Vo). However, changes in these cellular properties with aging remain unresolved, especially in older women, and the effect of submaximal Ca2+ on contractile function is unknown. Thus, we compared contractile properties of muscle fibers from 19 young (24 ± 3 yr; 8 women) and 21 older adults (77 ± 7 yr; 7 women) under maximal and submaximal Ca2+ and assessed the abundance of three proteins thought to influence Ca2+ sensitivity. Fast fiber cross-sectional area was ~44% larger in young (6,479 ± 2,487 µm2) compared with older adults (4,503 ± 2,071 µm2, P < 0.001), which corresponded with a greater absolute Po (young = 1.12 ± 0.43 mN; old = 0.79 ± 0.33 mN, P < 0.001). There were no differences in fast fiber size-specific Po, indicating the age-related decline in force was explained by differences in fiber size. Except for fast fiber size and absolute Po, no age or sex differences were observed in Ca2+ sensitivity, rate of force development (ktr), or Vo in either slow or fast fibers. Submaximal Ca2+ depressed ktr and Vo, but the effects were not altered by age in either sex. Contrary to rodent studies, regulatory light chain (RLC) and myosin binding protein-C abundance and RLC phosphorylation were unaltered by age or sex. These data suggest the age-associated reductions in contractile function are primarily due to the atrophy of fast fibers and that caution is warranted when extending results from rodent studies to humans.


Assuntos
Envelhecimento/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Músculo Quadríceps/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Proteínas de Transporte/metabolismo , Feminino , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Fatores Sexuais , Fatores de Tempo , Adulto Jovem
6.
J Physiol ; 598(24): 5717-5737, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32964441

RESUMO

KEY POINTS: Knee-extensors demonstrate greater fatigue resistance in females compared to males during single-limb and whole-body exercise. For single-limb exercise, the intensity-duration relationship is different between sexes, with females sustaining a greater relative intensity of exercise. This study established the power-duration relationship during cycling, then assessed fatigability during critical power-matched exercise within the heavy and severe intensity domains. When critical power and the curvature constant were expressed relative to maximal ramp test power, no sex difference was observed. No sex difference in time to task failure was observed in either trial. During heavy and severe intensity cycling, females experienced lesser muscle de-oxygenation. Following both trials, females experienced lesser reductions in knee-extensor contractile function, and following heavy intensity exercise, females experienced less reduction in voluntary activation. These data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during critical power-matched exercise are mediated by sex. ABSTRACT: Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during single-limb and whole-body exercise modalities. Whilst females sustain a greater relative intensity of single-limb, isometric exercise than males, limited investigation has been performed during whole-body exercise. Accordingly, this study established the power-duration relationship during cycling in 18 trained participants (eight females). Subsequently, constant-load exercise was performed at critical power (CP)-matched intensities within the heavy and severe domains, with the mechanisms of fatigability assessed via non-invasive neurostimulation, near-infrared spectroscopy and pulmonary gas exchange during and following exercise. Relative CP (72 ± 5 vs. 74 ± 2% Pmax , P = 0.210) and curvature constant (51 ± 11 vs. 52 ± 10 J Pmax-1 , P = 0.733) of the power-duration relationship were similar between males and females. Subsequent heavy (P = 0.758) and severe intensity (P = 0.645) exercise time to task failures were not different between sexes. However, females experienced lesser reductions in contractile function at task failure (P ≤ 0.020), and greater vastus lateralis oxygenation (P ≤ 0.039) during both trials. Reductions in voluntary activation occurred following both trials (P < 0.001), but were less in females following the heavy trial (P = 0.036). Furthermore, during the heavy intensity trial only, corticospinal excitability was reduced at the cortical (P = 0.020) and spinal (P = 0.036) levels, but these reductions were not sex-dependent. Other than a lower respiratory exchange ratio in the heavy trial for females (P = 0.039), no gas exchange variables differed between sexes (P ≥ 0.052). Collectively, these data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during CP-matched exercise above and below CP are mediated by sex.


Assuntos
Fadiga Muscular , Caracteres Sexuais , Exercício Físico , Feminino , Humanos , Masculino , Contração Muscular , Músculo Esquelético
7.
Exp Physiol ; 105(12): 2007-2021, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002256

RESUMO

NEW FINDINGS: What is the topic of this review? We review sex differences within physiological systems implicated in exercise performance; specifically, how they integrate to determine metabolic thresholds and fatigability. Thereafter, we discuss the implications that these sex differences might have for long-term adaptation to exercise. What advances does it highlight? The review collates evidence from recent physiological studies that have investigated sex as a biological variable, demonstrating that the physiological response to equivalent 'dosages' of exercise is not the same in males and females; thus, highlighting the need to research diversity in physiological responses to interventions. ABSTRACT: The anatomical and physiological differences between males and females are thought to determine differences in the limits of human performance. The notion of studying sex as a biological variable has recently been emphasized in the biosciences as a vital step in enhancing human health. In this review, we contend that the effects of biological sex on acute and chronic responses must be studied and accounted for when prescribing aerobic exercise, much like any intervention targeting the optimization of physiological function. Emerging evidence suggests that the response of physiological systems to exercise differs between males and females, potentially mediating the beneficial effects in healthy and clinical populations. We highlight evidence that integrative metabolic thresholds during exercise are influenced by phenotypical sex differences throughout many physiological systems. Furthermore, we discuss evidence that female skeletal muscle is more resistant to fatigue elicited by equivalent dosages of high-intensity exercise. How the different acute responses affect the long-term trainability of males and females is considered, with discussion about tailoring exercise to the characteristics of the individual presented within the context of biological sex. Finally, we highlight the influence of endogenous and exogenous sex hormones on physiological responses to exercise in females. Sex is one of many mediating influences on the outcomes of exercise, and with careful experimental designs, physiologists can advance the collective understanding of diversity in physiology and optimize outcomes for both sexes.


Assuntos
Exercício Físico/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Humanos , Caracteres Sexuais , Fatores Sexuais
8.
Eur J Appl Physiol ; 120(10): 2289-2299, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32789699

RESUMO

AIM: Reduced physical function and increased risk of falls in older adults are accompanied by age-related reductions in torque development of leg muscles, although the mechanisms and potential sex differences are not understood. PURPOSE: To determine the mechanistic origins (neural vs. muscular) for the age-related reduction in torque development, we compared the peak rates of torque development (RTD) during electrically-evoked and fast voluntary contractions of the knee extensors between young and older men and women. METHODS: Sets of single- and double-pulse electrical stimulations evoked contractions of the knee extensor muscles in 20 young (23.0 ± 0.8 years; 10 women) and 20 older adults (78.2 ± 1.5 years; 10 women), followed by voluntary isometric knee extension contractions with torque development as fast as possible that matched the torque during electrically-evoked contraction (10-40% maximal torque). RESULTS: Peak RTD during fast-voluntary contractions was 41% less than electrically-evoked contractions (p < 0.001), but more so for older adults (44%) than young (38%, p = 0.04), with no sex differences. Peak RTD during fast-voluntary contractions was more variable between contractions for the older than young adults (77%MVC s-1 vs. 47%MVC s-1, p < 0.001). Additionally, older women exhibited greater variability than older men (81%MVC s-1 vs. 72%MVC s-1, p = 0.04) with no sex-related differences within the young adults. CONCLUSION: Older adults had slower and more variable RTD during voluntary contractions than young adults, particularly older women. The limited age-related differences in electrically-evoked RTD suggest the primary mechanism for the slower torque development of the knee extensor muscles in older men and women involve reduced neural activation.


Assuntos
Envelhecimento/fisiologia , Contração Isométrica , Joelho/fisiologia , Músculo Esquelético/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estimulação Elétrica , Feminino , Humanos , Joelho/crescimento & desenvolvimento , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Tempo de Reação , Torque
9.
Diabetes Spectr ; 33(1): 104-110, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32116462

RESUMO

BACKGROUND AND OBJECTIVE: Exercise is a cornerstone of management for type 2 diabetes; however, little is known about the cardiovascular (CV) response to submaximal functional exercise in people with type 2 diabetes. The aim of this study was to compare performance and CV response during a 6-minute walk test (6MWT) between people with type 2 diabetes and matched control subjects. METHODS: CV response and distance walked during the 6MWT were assessed in 30 people with type 2 diabetes, matched for age, body composition, physical activity, and estimated aerobic capacity with 34 control subjects (type 2 diabetes group: 16 men, 59.8 ± 8.8 years of age, 33.3 ± 10.9% body fat, physical activity of 7,968 ± 3,236 steps·day-1, estimated aerobic capacity 31.9 ± 11.1 mLO2·kg-1·min-1; control group: 19 men, 59.3 ± 8.8 years of age, 32.7 ± 8.5% body fat, physical activity 8,228 ± 2,941 steps·day-1, estimated aerobic capacity 34.9 ± 15.4 mLO2·kg-1·min-1). RESULTS: People with type 2 diabetes walked a similar distance (590 ± 75 vs. 605 ± 69 m; P = 0.458) compared with control subjects during the 6MWT and had similar ratings of perceived exertion (RPE) after the 6MWT (4.19 ± 1.56 vs. 3.65 ± 1.54, P = 0.147). However, at the end of the 6MWT, people with type 2 diabetes had a higher heart rate (108 ± 23 vs. 95 ± 18 beats·min-1; P = 0.048), systolic blood pressure (169 ± 26 vs. 147 ± 22 mmHg, P = 0.003), and rate-pressure product (18,762 ± 5,936 vs. 14,252 ± 4,330, P = 0.009) than control subjects. CONCLUSION: Although people with type 2 diabetes had similar performance and RPE during the 6MWT compared with control subjects, the CV response was greater for people with type 2 diabetes, indicating greater cardiac effort for similar perceived effort and performance of 6MWT. These data suggest that observation and prescription of exercise intensity should include both perceived effort and CV response.

10.
J Physiol ; 597(19): 4943-4957, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31018011

RESUMO

KEY POINTS: The mechanisms for the age-related increase in fatigability during dynamic exercise remain elusive. We tested whether age-related impairments in muscle oxidative capacity would result in a greater accumulation of fatigue causing metabolites, inorganic phosphate (Pi ), hydrogen (H+ ) and diprotonated phosphate (H2 PO4- ), in the muscle of old compared to young adults during a dynamic knee extension exercise. The age-related increase in fatigability (reduction in mechanical power) of the knee extensors was closely associated with a greater accumulation of metabolites within the working muscle but could not be explained by age-related differences in muscle oxidative capacity. These data suggest that the increased fatigability in old adults during dynamic exercise is primarily determined by age-related impairments in skeletal muscle bioenergetics that result in a greater accumulation of metabolites. ABSTRACT: The present study aimed to determine whether the increased fatigability in old adults during dynamic exercise is associated with age-related differences in skeletal muscle bioenergetics. Phosphorus nuclear magnetic resonance spectroscopy was used to quantify concentrations of high-energy phosphates and pH in the knee extensors of seven young (22.7 ± 1.2 years; six women) and eight old adults (76.4 ± 6.0 years; seven women). Muscle oxidative capacity was measured from the phosphocreatine (PCr) recovery kinetics following a 24 s maximal voluntary isometric contraction. The fatiguing exercise consisted of 120 maximal velocity contractions (one contraction per 2 s) against a load equivalent to 20% of the maximal voluntary isometric contraction. The PCr recovery kinetics did not differ between young and old adults (0.023 ± 0.007 s-1  vs. 0.019 ± 0.004 s-1 , respectively). Fatigability (reductions in mechanical power) of the knee extensors was ∼1.8-fold greater with age and was accompanied by a greater decrease in pH (young = 6.73 ± 0.09, old = 6.61 ± 0.04) and increases in concentrations of inorganic phosphate, [Pi ], (young = 22.7 ± 4.8 mm, old = 32.3 ± 3.6 mm) and diprotonated phosphate, [H2 PO4- ], (young = 11.7 ± 3.6 mm, old = 18.6 ± 2.1 mm) at the end of the exercise in old compared to young adults. The age-related increase in power loss during the fatiguing exercise was strongly associated with intracellular pH (r = -0.837), [Pi ] (r = 0.917) and [H2 PO4- ] (r = 0.930) at the end of the exercise. These data suggest that the age-related increase in fatigability during dynamic exercise has a bioenergetic basis and is explained by an increased accumulation of metabolites within the muscle.


Assuntos
Envelhecimento/fisiologia , Metabolismo Energético/fisiologia , Fadiga , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Adulto Jovem
11.
J Physiol ; 597(23): 5577-5595, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31529693

RESUMO

KEY POINTS: Females demonstrate greater fatigue resistance than males during contractions at intensities relative to maximum force. However, previous studies have not accounted for the influence of metabolic thresholds on fatigability. This study is the first to test whether sex differences in fatigability exist when exercise intensity is normalised relative to a metabolic threshold: the critical intensity derived from assessment of the intensity-duration relationship during intermittent, isometric knee extensor contractions. We show that critical intensity in females occurred at a higher percentage of maximum force compared to males. Furthermore, females demonstrated greater fatigue resistance at exercise intensities above and below this metabolic threshold. Our data suggest that the sex difference was mediated by lesser deoxygenation of the knee extensors during exercise. These data highlight the importance of accounting for metabolic thresholds when comparing fatigability between sexes, whilst emphasising the notion that male data are not generalisable to female populations. ABSTRACT: Females are less fatigable than males during isometric exercise at intensities relative to maximal voluntary contraction (MVC); however, whether a sex difference in fatigability exists when exercise is prescribed relative to a critical intensity is unknown. This study established the intensity-duration relationship, and compared fatigability and recovery between sexes following intermittent isometric contractions normalised to critical intensity. Twenty participants (10 females) completed four intermittent isometric knee extension trials to task failure to determine critical intensity and the curvature constant (W'), followed by fatiguing tasks at +10% and -10% relative to critical intensity. Neuromuscular assessments were completed at baseline and for 45 min post-exercise. Non-invasive neurostimulation, near-infrared spectroscopy, and non-invasive haemodynamic monitoring were used to elucidate the physiological mechanisms responsible for sex differences. Females demonstrated a greater critical intensity relative to MVC than males (25 ± 3 vs. 21 ± 2% MVC, P = 0.003), with no sex difference for W' (18,206 ± 6331 vs. 18,756 ± 5762 N s, P = 0.850). Time to task failure was greater for females (62.37 ± 17.25 vs. 30.43 ± 12.75 min, P < 0.001) during the +10% trial, and contractile function recovered faster post-exercise (P = 0.034). During the -10% trial females experienced less contractile dysfunction (P = 0.011). Throughout the +10% trial, females demonstrated lesser decreases in deoxyhaemoglobin (P = 0.007) and an attenuated exercise pressor reflex. These data show that a sex difference in fatigability exists even when exercise is matched for critical intensity. We propose that greater oxygen availability during exercise permits females to sustain a higher relative intensity than males, and is an explanatory factor for the sex difference in fatigability during intermittent, isometric contractions.


Assuntos
Fadiga Muscular/fisiologia , Caracteres Sexuais , Adulto , Eletromiografia , Exercício Físico/fisiologia , Feminino , Humanos , Contração Isométrica , Joelho/fisiologia , Masculino , Músculo Esquelético/fisiologia , Torque , Estimulação Magnética Transcraniana , Adulto Jovem
12.
J Neurophysiol ; 122(1): 241-250, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091158

RESUMO

Corticospinal tract excitability can be altered by age, physical activity (PA), and possibly sex, but whether these effects differ between upper and lower limb muscles is unknown. We determined the influence of age, PA, and sex on corticospinal excitability of an upper limb and a lower limb muscle during submaximal contractions by comparing stimulus-response curves of motor evoked potentials (MEPs). Transcranial magnetic stimulation (TMS) was used to evoke stimulus-response curves in active muscles by incrementally increasing the stimulator intensity from below the active motor threshold (AMT) until a plateau in MEP amplitudes was achieved. Stimulus-response curves were analyzed from the first dorsal interosseous (FDI) of 30 young (23.9 ± 3.8 yr) and 33 older (72.6 ± 5.6 yr) men and women and the vastus lateralis (VL) of 13 young (23.2 ± 2.2 yr) and 25 older (72.7 ± 5.5 yr) men and women. Corticospinal excitability was determined by fitting the curves with a four-parameter sigmoidal curve and calculating the maximal slope (slopemax). PA was assessed with triaxial accelerometry, and participants were dichotomized into high-PA (>10,000 steps/day, n = 15) or low-PA (<10,000 steps/day, n = 43) groups. Young adults had larger FDI MEP amplitudes (% maximum amplitude of compound muscle action potential) at higher TMS intensities (120-150% AMT) and greater slopemax than older adults (P < 0.05), with no differences between high- and low-PA groups (P > 0.05). VL MEP amplitudes and slopemax, however, were lower in the high-PA than low-PA participants, with no age or sex differences. These data suggest that aging and PA, but not sex, differentially influence the excitability of the corticospinal tracts projecting to muscles of the upper compared with the lower limb. NEW & NOTEWORTHY Excitability of the corticospinal tract projecting to the first dorsal interosseous assessed with transcranial magnetic stimulation was reduced with age but independent of regular physical activity (steps/day) and sex of the individual. In contrast, corticospinal excitability of the vastus lateralis was not affected by age but was reduced in individuals achieving more than the physical activity recommendations of 10,000 steps/day. Aging and activity differentially affect corticospinal excitability of upper and lower limb muscles.


Assuntos
Envelhecimento/fisiologia , Potencial Evocado Motor , Exercício Físico , Músculo Esquelético/fisiologia , Tratos Piramidais/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Extremidades/crescimento & desenvolvimento , Extremidades/inervação , Extremidades/fisiologia , Feminino , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação
13.
Exerc Sport Sci Rev ; 52(1): 1-2, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126400
14.
J Physiol ; 596(17): 3993-4015, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29806714

RESUMO

KEY POINTS: The mechanisms responsible for the loss in muscle power and increased fatigability with ageing are unresolved. We show that the contractile mechanics of fibres from the vastus lateralis of old men were well-preserved compared to those of young men, but the selective loss of fast myosin heavy chain II muscle was strongly associated with age-related decrements in whole-muscle strength and power. We reveal that the combination of acidosis (H+ ) and inorganic phosphate (Pi ) is an important mediator of muscle fatigue in humans by inhibiting the low- to high-force state of the cross-bridge cycle and peak power, but the depressive effects of these ions on cross-bridge function were similar in fibres from young and old men. These findings suggest that the age-related loss in muscle power is primarily determined by the atrophy of fast fibres, but the age-related increased fatigability cannot be explained by an increased sensitivity of the cross-bridge to H+ and Pi . ABSTRACT: The present study aimed to identify the mechanisms responsible for the loss in muscle power and increased fatigability with ageing by integrating measures of whole-muscle function with single fibre contractile mechanics. After adjusting for the 22% smaller muscle mass in old (73-89 years, n = 6) compared to young men (20-29 years, n = 6), isometric torque and power output of the knee extensors were, respectively, 38% and 53% lower with age. Fatigability was ∼2.7-fold greater with age and strongly associated with reductions in the electrically-evoked contractile properties. To test whether cross-bridge mechanisms could explain age-related decrements in knee extensor function, we exposed myofibres (n = 254) from the vastus lateralis to conditions mimicking quiescent muscle and fatiguing levels of acidosis (H+ ) (pH 6.2) and inorganic phosphate (Pi ) (30 mm). The fatigue-mimicking condition caused marked reductions in force, shortening velocity and power and inhibited the low- to high-force state of the cross-bridge cycle, confirming findings from non-human studies that these ions act synergistically to impair cross-bridge function. Other than severe age-related atrophy of fast fibres (-55%), contractile function and the depressive effects of the fatigue-mimicking condition did not differ in fibres from young and old men. The selective loss of fast myosin heavy chain II muscle was strongly associated with the age-related decrease in isometric torque (r = 0.785) and power (r = 0.861). These data suggest that the age-related loss in muscle strength and power are primarily determined by the atrophy of fast fibres, but the age-related increased fatigability cannot be explained by an increased sensitivity of the cross-bridge to H+ and Pi .


Assuntos
Acidose/fisiopatologia , Contração Muscular , Fadiga Muscular , Fibras Musculares Esqueléticas/patologia , Força Muscular , Fosfatos/farmacologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Adulto Jovem
15.
J Neurophysiol ; 120(6): 3246-3256, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379629

RESUMO

Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated. During conditions of whole leg occlusion, the discharge timings of motor units were identified from decomposition of high-density surface electromyography signals during repeated submaximal knee extensor contractions. Quadriceps resting twitch responses and near-infrared spectroscopy measurements of oxygen saturation as an indirect measure of blood flow were made. There was a greater decrease in paretic motor unit discharge rates during the occlusion compared with the controls (average decrease for stroke and controls, 12.3 ± 10.0% and 0.1 ± 12.4%, respectively; P < 0.001). The motor unit recruitment thresholds did not change with the occlusion (stroke: without occlusion, 11.68 ± 5.83%MVC vs. with occlusion, 11.11 ± 5.26%MVC; control: 11.87 ± 5.63 vs. 11.28 ± 5.29%MVC). Resting twitch amplitudes declined similarly for both groups in response to whole leg occlusion (stroke: 29.16 ± 6.88 vs. 25.75 ± 6.78 Nm; control: 38.80 ± 13.23 vs 30.14 ± 9.64 Nm). Controls had a greater exponential decline (lower time constant) in oxygen saturation compared with the stroke group (stroke time constant, 22.90 ± 10.26 min vs. control time constant, 5.46 ± 4.09 min; P < 0.001). Ischemia of the muscle resulted in greater neural inhibition of paretic motor units compared with controls and may contribute to deficient muscle activation poststroke. NEW & NOTEWORTHY Hyperexcitable inhibitory sensory pathways sensitive to ischemia may play a role in deficient motor unit activation post stroke. Using high-density surface electromyography recordings to detect motor unit firing instances, we show that ischemia of the exercising muscle results in greater inhibition of paretic motor unit firing rates compared with controls. These findings are impactful to neurophysiologists and clinicians because they implicate a novel mechanism of force-generating impairment poststroke that likely exacerbates baseline weakness.


Assuntos
Isquemia Encefálica/fisiopatologia , Recrutamento Neurofisiológico , Acidente Vascular Cerebral/fisiopatologia , Idoso , Feminino , Humanos , Joelho/inervação , Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia
16.
Exerc Sport Sci Rev ; 51(1): 1, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508504
17.
Gynecol Oncol ; 144(1): 187-192, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27839789

RESUMO

INTRODUCTION: Minimally invasive surgery (MIS) has been associated with diminished postoperative pain and analgesia requirements. The objective of the current study was to evaluate the use of analgesia in the post-operative period following robotic surgery for endometrial cancer. METHODS: All consecutive patients who underwent robotic surgery for the treatment of endometrial cancer were included in this study. The timing, dose, and type of analgesics administered postoperatively were recorded from patients' electronic medical record. Data was compared to a matched historical cohort of patients who underwent laparotomy before the introduction of the robotic program. RESULTS: Only eight patients (2.4%, 5 during the first 25 cases and 3 following mini-laparotomy) received patient-controlled analgesia (PCA) following robotic surgery. Most patients' pain was alleviated by over-the-counter analgesics (acetaminophen, non-steroidal anti-inflammatories). In comparison to laparotomy, patients who underwent robotic surgery required significantly less opioids (71mg vs. 12mg IV morphine, p<0.0001) and non-opioids (4810mg vs. 2151mg acetaminophen, 1892 vs. 377mg ibuprofen, and 1470mg vs. 393mg naproxen; all p<0.0001). CONCLUSION: Patients require less analgesics (opioids and non-opioids) following robotic surgery in comparison to conventional laparotomy, including the elderly and the obese. The diminished pain medication use is associated with some cost savings.


Assuntos
Analgésicos/administração & dosagem , Neoplasias do Endométrio/cirurgia , Dor Pós-Operatória/tratamento farmacológico , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Acetaminofen/administração & dosagem , Idoso , Analgesia Controlada pelo Paciente/economia , Analgésicos/economia , Anti-Inflamatórios não Esteroides/administração & dosagem , Custos de Medicamentos , Registros Eletrônicos de Saúde , Feminino , Humanos , Ibuprofeno/administração & dosagem , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Morfina/administração & dosagem , Naproxeno/administração & dosagem , Estudos Retrospectivos
18.
Exp Brain Res ; 235(8): 2425-2436, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500456

RESUMO

Sex is an important physiological variable of behavior, but its effect on motor control remains poorly understood. Some evidence suggests that women exhibit greater variability during constant contractions and poorer accuracy during goal-directed tasks. However, it remains unclear whether motor output variability or altered muscle activation impairs accuracy in women. Here, we examine sex differences in endpoint accuracy during ankle goal-directed movements and the activity of the antagonistic muscles. Ten women (23.1 ± 5.1 years) and 10 men (23 ± 3.7 years) aimed to match a target (9° in 180 ms) with ankle dorsiflexion. Participants performed 50 trials and we recorded the endpoint accuracy and the electromyographic (EMG) activity of the primary agonist (Tibialis Anterior; TA) and antagonist (Soleus; SOL) muscles. Women exhibited greater spatial inaccuracy (Position error: t = -2.65, P = 0.016) but not temporal inaccuracy relative to men. The motor output variability was similar for the two sexes (P > 0.2). The spatial inaccuracy in women was related to greater variability in the coordination of the antagonistic muscles (R 2 0.19, P = 0.03). These findings suggest that women are spatially less accurate than men during fast goal-directed movements likely due to an altered activation of the antagonistic muscles.


Assuntos
Potencial Evocado Motor/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Caracteres Sexuais , Percepção Espacial/fisiologia , Adolescente , Adulto , Tornozelo/inervação , Eletromiografia , Retroalimentação Fisiológica , Feminino , Objetivos , Humanos , Masculino , Contração Muscular/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem
19.
Eur J Appl Physiol ; 117(12): 2493-2507, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058113

RESUMO

Whether reduced supraspinal activation contributes to age-related reductions in maximal torque during dynamic contractions is not known. The purpose was to determine whether there are age differences in voluntary activation and its variability when assessed with stimulation at the motor cortex and the muscle during maximal isometric, concentric, and eccentric contractions. Thirty young (23.6 ± 4.1 years) and 31 old (69.0 ± 5.2 years) adults performed maximal isometric, shortening (concentric) and lengthening (eccentric) contractions with the elbow flexor muscles. Maximal isometric contractions were performed at 90° elbow flexion and dynamic contractions at a velocity of 60°/s. Voluntary activation was assessed by superimposing an evoked contraction with transcranial magnetic stimulation (TMS) or with electrical stimulation over the muscle during maximal voluntary contractions (MVCs). Old adults had lower MVC torque during isometric (- 17.9%), concentric (- 19.7%), and eccentric (- 9.9%) contractions than young adults, with less of an age difference for eccentric contractions. Voluntary activation was similar between the three contraction types when assessed with TMS and electrical stimulation, with no age group differences. Old adults, however, were more variable in voluntary activation than young (standard deviation 0.99 ± 0.47% vs. 0.73 ± 0.43%, respectively) to both the motor cortex and muscle, and had greater coactivation of the antagonist muscles during dynamic contractions. Thus, the average voluntary activation to the motor cortex and muscle did not differ with aging; however, supraspinal activation was more variable during maximal dynamic and isometric contractions in the old adults. Lower predictability of voluntary activation may indicate subclinical changes in the central nervous system with advanced aging.


Assuntos
Envelhecimento/fisiologia , Contração Isométrica , Músculo Esquelético/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/crescimento & desenvolvimento , Fatores Sexuais
20.
Eur J Appl Physiol ; 117(6): 1119-1130, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28432420

RESUMO

PURPOSE: This study examined the mechanisms for force and power reduction during and up to 48 h after maximal eccentric contractions of the knee extensor muscles in young men and women. METHODS: 13 men (22.8 ± 2.6 years) and 13 women (21.6 ± 2.2 years) performed 150 maximal effort eccentric contractions (5 sets of 30) with the knee extensor muscles at 60° s-1. Maximal voluntary isometric contractions (MVIC) and maximal voluntary concentric contractions (MVCC) were performed before and after the 150 eccentric contractions. The MVCCs involved a set of two isokinetic contractions at 60° s-1 and sets of isotonic contractions performed at seven different resistance loads (1 N m, 10, 20, 30, 40, 50, and 60% MVIC). Electrical stimulation was used during the MVICs and at rest to determine changes in voluntary activation and contractile properties. RESULTS: At baseline, men were stronger than women (MVIC: 276 ± 48 vs. 133 ± 37 N m) and more powerful (MVCC: 649 ± 77 vs. 346 ± 78 W). At termination of the eccentric contractions, voluntary activation, resting twitch amplitude, and peak power during concentric contractions at the seven loads and at 60° s-1 decreased (P < 0.05) similarly in the men and women. At 48 h post-exercise, the MVIC torque, power (for loads ≥20-60% MVIC), and voluntary activation remained depressed (P < 0.05), but the resting twitch had returned to baseline (P > 0.05) with no sex differences. CONCLUSION: Central mechanisms were primarily responsible for the depressed maximal force production up to 48 h after repeated eccentric contractions of the knee extensors and these mechanisms were similar in men and women.


Assuntos
Joelho/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Feminino , Humanos , Masculino , Fadiga Muscular , Músculo Esquelético/inervação , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA