Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804138

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a major complication linked to adverse outcomes in heart failure with preserved ejection fraction (HFpEF), yet no specific therapies exist for PH associated with HFpEF (PH-HFpEF). We have recently reported on the role of skeletal muscle SIRT3 (sirtuin-3) in modulation of PH-HFpEF, suggesting a novel endocrine signaling pathway for skeletal muscle modulation of pulmonary vascular remodeling. In this study, we attempted to define the processes by which skeletal muscle SIRT3 defects affect pulmonary vascular health in PH-HFpEF. METHODS AND RESULTS: Skeletal muscle-specific Sirt3 knockout mice (Sirt3skm-/-) exhibited reduced pulmonary vascular density accompanied by pulmonary vascular proliferative remodeling and elevated pulmonary pressures. Using mass spectrometry-based comparative secretome analysis, we demonstrated elevated secretion of LOXL2 (lysyl oxidase homolog 2) in SIRT3-deficient skeletal muscle cells. Elevated circulation and protein expression levels of LOXL2 were also observed in plasma and skeletal muscle of Sirt3skm-/- mice, a rat model of PH-HFpEF, and humans with PH-HFpEF. In addition, expression levels of CNPY2 (canopy fibroblast growth factor signaling regulator 2), a known proliferative and angiogenic factor, were increased in pulmonary artery endothelial cells and pulmonary artery smooth muscle cells of Sirt3skm-/- mice and animal models of PH-HFpEF. CNPY2 levels were also higher in pulmonary artery smooth muscle cells of subjects with obesity compared with nonobese subjects. Moreover, treatment with recombinant LOXL2 protein promoted pulmonary artery endothelial cell migration/proliferation and pulmonary artery smooth muscle cell proliferation through regulation of CNPY2-p53 signaling. Last, skeletal muscle-specific Loxl2 deletion decreased pulmonary artery endothelial cell and pulmonary artery smooth muscle cell expression of CNPY2 and improved pulmonary pressures in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS: This study demonstrates a systemic pathogenic impact of skeletal muscle SIRT3 deficiency in remote pulmonary vascular remodeling and PH-HFpEF. This study suggests a new endocrine signaling axis that links skeletal muscle health and SIRT3 deficiency to remote CNPY2 regulation in the pulmonary vasculature through myokine LOXL2. Our data also identify skeletal muscle SIRT3, myokine LOXL2, and CNPY2 as potential targets for the treatment of PH-HFpEF.

2.
Arterioscler Thromb Vasc Biol ; 44(7): 1570-1583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813697

RESUMO

BACKGROUND: Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. METHODS: We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. RESULTS: Plasma proteomics identified high protein abundance levels of B2M (ß2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS: Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca , Hipertensão Pulmonar , Proteômica , Volume Sistólico , Microglobulina beta-2 , Adulto , Idoso , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Microglobulina beta-2/genética , Microglobulina beta-2/sangue , Microglobulina beta-2/metabolismo , Biomarcadores/sangue , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Proteômica/métodos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Remodelação Vascular , Função Ventricular Esquerda
3.
Curr Osteoporos Rep ; 22(3): 318-329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649653

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to discuss the musculoskeletal consequences of cancer, including those that occur in the absence of bone metastases. RECENT FINDINGS: Cancer patients frequently develop cachexia, a debilitating condition reflected by weight loss and skeletal muscle wasting. The negative effects that tumors exert on bone health represents a growing interest amongst cachexia researchers. Recent clinical and pre-clinical evidence demonstrates cancer-induced bone loss, even in the absence of skeletal metastases. Together with muscle wasting, losses in bone demonstrates the impact of cancer on the musculoskeletal system. Identifying therapeutic targets that comprehensively protect musculoskeletal health is essential to improve the quality of life in cancer patients and survivors. IL-6, RANKL, PTHrP, sclerostin, and TGF-ß superfamily members represent potential targets to counteract cachexia. However, more research is needed to determine the efficacy of these targets in protecting both skeletal muscle and bone.


Assuntos
Caquexia , Músculo Esquelético , Neoplasias , Humanos , Caquexia/etiologia , Músculo Esquelético/metabolismo , Neoplasias/patologia , Neoplasias/complicações , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ligante RANK/metabolismo , Interleucina-6/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Qualidade de Vida , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Morfogenéticas Ósseas/metabolismo
4.
Function (Oxf) ; 5(3): zqae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706958

RESUMO

Thanks to recent progress in cancer research, most children treated for cancer survive into adulthood. Nevertheless, the long-term consequences of anticancer agents are understudied, especially in the pediatric population. We and others have shown that routinely administered chemotherapeutics drive musculoskeletal alterations, which contribute to increased treatment-related toxicity and long-term morbidity. Yet, the nature and scope of these enduring musculoskeletal defects following anticancer treatments and whether they can potentially impact growth and quality of life in young individuals remain to be elucidated. Here, we aimed at investigating the persistent musculoskeletal consequences of chemotherapy in young (pediatric) mice. Four-week-old male mice were administered a combination of 5-FU, leucovorin, irinotecan (a.k.a., Folfiri) or the vehicle for up to 5 wk. At time of sacrifice, skeletal muscle, bones, and other tissues were collected, processed, and stored for further analyses. In another set of experiments, chemotherapy-treated mice were monitored for up to 4 wk after cessation of treatment. Overall, the growth rate was significantly slower in the chemotherapy-treated animals, resulting in diminished lean and fat mass, as well as significantly smaller skeletal muscles. Interestingly, 4 wk after cessation of the treatment, the animals exposed to chemotherapy showed persistent musculoskeletal defects, including muscle innervation deficits and abnormal mitochondrial homeostasis. Altogether, our data support that anticancer treatments may lead to long-lasting musculoskeletal complications in actively growing pediatric mice and support the need for further studies to determine the mechanisms responsible for these complications, so that new therapies to prevent or diminish chemotherapy-related toxicities can be identified.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina/análogos & derivados , Animais , Camundongos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Irinotecano/efeitos adversos , Fluoruracila/efeitos adversos , Fluoruracila/toxicidade , Leucovorina , Camptotecina/efeitos adversos , Camptotecina/toxicidade , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA