Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Immunol ; 386: 104691, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822152

RESUMO

COVID-19 has caused significant morbidity and mortality worldwide but also accelerated the clinical use of emerging vaccine formulations. To address the current shortcomings in the prevention and treatment of SARS-CoV-2 infection, this study developed a novel vaccine platform that closely mimics dendritic cells (DCs) in antigen presentation and T-cell stimulation in a cell-free and tunable manner. Genetically engineered DCs that express the SARS-CoV-2 spike protein (S) were chemically converted into extracellular blebs (EBs). The resulting EBs elicited potentially protective humoral immunity in vivo, indicated by the production of antibodies that potently neutralized S-pseudotyped virus, presenting EBs as a promising and safe vaccine.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Células Dendríticas , Glicoproteína da Espícula de Coronavírus/genética , Vacinação
2.
Malar J ; 15: 333, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27333893

RESUMO

BACKGROUND: Despite largely successful control efforts, malaria remains a significant public health problem in Thailand. Based on microscopy, the northwestern province of Tak, once Thailand's highest burden area, is now considered a low-transmission region. However, microscopy is insensitive to detect low-level parasitaemia, causing gross underestimation of parasite prevalence in areas where most infections are subpatent. The objective of this study was to assess the current epidemiology of malaria prevalence using molecular and serological detection methods, and to profile the antibody responses against Plasmodium as it relates to age, seasonal changes and clinical manifestations during infection. Three comprehensive cross-sectional surveys were performed in a sentinel village and from febrile hospital patients, and whole blood samples were collected from infants to elderly adults. Genomic DNA isolated from cellular fraction was screened by quantitative-PCR for the presence of Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Plasma samples were probed on protein microarray to obtain antibody response profiles from the same individuals. RESULTS: Within the studied community, 90.2 % of Plasmodium infections were submicroscopic and asymptomatic, including a large number of mixed-species infections. Amongst febrile patients, mixed-species infections comprised 68 % of positive cases, all of which went misdiagnosed and undertreated. All samples tested showed serological reactivity to Plasmodium antigens. There were significant differences in the rates of antibody acquisition against P. falciparum and P. vivax, and age-related differences in species-specific immunodominance of response. Antibodies against Plasmodium increased along the ten-month study period. Febrile patients had stronger antibody responses than asymptomatic carriers. CONCLUSIONS: Despite a great decline in malaria prevalence, transmission is still ongoing at levels undetectable by traditional methods. As current surveillance methods focus on case management, malaria transmission in Thailand will not be interrupted if asymptomatic submicroscopic infections are not detected and treated.


Assuntos
Doenças Assintomáticas/epidemiologia , Malária/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Estudos Longitudinais , Malária/parasitologia , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Plasmodium/classificação , Plasmodium/isolamento & purificação , Prevalência , Testes Sorológicos , Tailândia/epidemiologia , Adulto Jovem
3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328128

RESUMO

Current influenza A vaccines fall short, leaving both humans and animals vulnerable. To address this issue, we have developed attenuated modified live virus (MLV) vaccines against influenza using genome rearrangement techniques targeting the internal gene segments of FLUAV. The rearranged M2 (RAM) strategy involves cloning the M2 ORF downstream of the PB1 ORF in segment 2 and incorporating multiple early stop codons within the M2 ORF in segment 7. Additionally, the IgA-inducing protein (IGIP) coding region was inserted into the HA segment to further attenuate the virus and enhance protective mucosal responses. RAM-IGIP viruses exhibit similar growth rates to wild type (WT) viruses in vitro and remain stable during multiple passages in cells and embryonated eggs. The safety, immunogenicity, and protective efficacy of the RAM-IGIP MLV vaccine against the prototypical 2009 pandemic H1N1 strain A/California/04/2009 (H1N1) (Ca/04) were evaluated in Balb/c mice and compared to a prototypic cold-adapted live attenuated virus vaccine. The results demonstrate that the RAM-IGIP virus exhibits attenuated virulence in vivo. Mice vaccinated with RAM-IGIP and subsequently challenged with an aggressive lethal dose of the Ca/04 strain exhibited complete protection. Analysis of the humoral immune response revealed that the inclusion of IGIP enhanced the production of neutralizing antibodies and augmented the antibody-dependent cellular cytotoxicity response. Similarly, the RAM-IGIP potentiated the mucosal immune response against various FLUAV subtypes. Moreover, increased antibodies against NP and NA responses were observed. These findings support the development of MLVs utilizing genome rearrangement strategies in conjunction with the incorporation of immunomodulators. IMPORTANCE: Current influenza vaccines offer suboptimal protection, leaving both humans and animals vulnerable. Our novel attenuated MLV vaccine, built by rearranging FLUAV genome segments and incorporating the IgA-inducing protein, shows promising results. This RAM-IGIP vaccine exhibits safe attenuation, robust immune responses, and complete protection against lethal viral challenge in mice. Its ability to stimulate broad-spectrum humoral and mucosal immunity against diverse FLUAV subtypes makes it a highly promising candidate for improved influenza vaccines.

4.
Pathogens ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513710

RESUMO

There is an urgent need to produce a vaccine for Chlamydia trachomatis infections. Here, using the Chlamydia muridarum major outer membrane protein (MOMP) as an antigen, four adjuvant combinations IVAX-1 (MPLA+CpG-1018+AddaVax), IVAX-2 (MPLA+CpG-1018+AS03), CpG-1826+Montanide ISA 720 VG (CpG-1826+Mont) and CpG-1018+Montanide ISA 720 VG (CpG-1018+Mont), were tested for their local reactogenicity and ability to elicit protection in BALB/c mice against a respiratory challenge with C. muridarum. Immunization with IVAX-1 or IVAX-2 induced no significant local reactogenicity following intramuscular immunization. In contrast, vaccines containing Montanide resulted in the formation of a local granuloma. Based on the IgG2a/IgG1 ratio in serum, the four adjuvant combinations elicited Th1-biased responses. IVAX-1 induced the highest in vitro neutralization titers while CpG-1018+Mont stimulated the lowest. As determined by the levels of IFN-γ produced by T-cells, the most robust cellular immune responses were elicited in mice immunized with CpG-1018+Mont, while the weakest responses were mounted by mice receiving IVAX-1. Following the respiratory challenge, mice immunized with CpG-1018+Mont lost the least amount of body weight and had the lowest number of C. muridarum inclusion-forming units (IFUs) in the lungs, while those receiving IVAX-2 had lost the most weight and had the highest number of IFUs in their lungs. Animals vaccinated with CpG-1826+Mont had the lightest lungs while those immunized using IVAX-2 had the heaviest. To conclude, due to their safety and adjuvanticity, IVAX formulations should be considered for inclusion in human vaccines against Chlamydia.

5.
Biomedicines ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140339

RESUMO

High-throughput and rapid screening testing is highly desirable to effectively combat the rapidly evolving COVID-19 pandemic co-presents with influenza and seasonal common cold epidemics. Here, we present a general workflow for iterative development and validation of an antibody-based microarray assay for the detection of a respiratory viral panel: (a) antibody screening to quickly identify optimal reagents and assay conditions, (b) immunofluorescence assay design including signal amplification for low viral titers, (c) assay characterization with recombinant proteins, inactivated viral samples and clinical samples, and (d) multiplexing to detect a panel of common respiratory viruses. Using RT-PCR-confirmed SARS-CoV-2 positive and negative pharyngeal swab samples, we demonstrated that the antibody microarray assay exhibited a clinical sensitivity and specificity of 77.2% and 100%, respectively, which are comparable to existing FDA-authorized antigen tests. Moreover, the microarray assay is correlated with RT-PCR cycle threshold (Ct) values and is particularly effective in identifying high viral titers. The multiplexed assay can selectively detect SARS-CoV-2 and influenza virus, which can be used to discriminate these viral infections that share similar symptoms. Such protein microarray technology is amenable for scale-up and automation and can be broadly applied as a both diagnostic and research tool.

6.
NPJ Vaccines ; 7(1): 103, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042229

RESUMO

Current seasonal and pre-pandemic influenza vaccines induce short-lived predominantly strain-specific and limited heterosubtypic responses. To better understand how vaccine adjuvants AS03 and MF59 may provide improved antibody responses to vaccination, we interrogated serum from subjects who received 2 doses of inactivated monovalent influenza A/Indonesia/05/2005 vaccine with or without AS03 or MF59 using hemagglutinin (HA) microarrays (NCT01317758 and NCT01317745). The arrays were designed to reflect both full-length and globular head HA derived from 17 influenza A subtypes (H1 to H16 and H18) and influenza B strains. We observed significantly increased strain-specific and broad homo- and heterosubtypic antibody responses with both AS03 and MF59 adjuvanted vaccination with AS03 achieving a higher titer and breadth of IgG responses relative to MF59. The adjuvanted vaccine was also associated with the elicitation of stalk-directed antibody. We established good correlation of the array antibody responses to H5 antigens with standard HA inhibition and microneutralization titers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA