Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 426(6968): 857-62, 2003 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-14661031

RESUMO

In mammals, dosage compensation ensures equal X-chromosome expression between males (XY) and females (XX) by transcriptionally silencing one X chromosome in XX embryos. In the prevailing view, the XX zygote inherits two active X chromosomes, one each from the mother and father, and X inactivation does not occur until after implantation. Here, we report evidence to the contrary in mice. We find that one X chromosome is already silent at zygotic gene activation (2-cell stage). This X chromosome is paternal in origin and exhibits a gradient of silencing. Genes close to the X-inactivation centre show the greatest degree of inactivation, whereas more distal genes show variable inactivation and can partially escape silencing. After implantation, imprinted silencing in extraembryonic tissues becomes globalized and more complete on a gene-by-gene basis. These results argue that the XX embryo is in fact dosage compensated at conception along much of the X chromosome. We propose that imprinted X inactivation results from inheritance of a pre-inactivated X chromosome from the paternal germ line.


Assuntos
Blastocisto/metabolismo , Mecanismo Genético de Compensação de Dose , Cromossomo X/metabolismo , Zigoto/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Hibridização in Situ Fluorescente , Masculino , Camundongos , RNA Longo não Codificante , RNA não Traduzido/genética , Caracteres Sexuais , Espermatozoides/metabolismo , Transcrição Gênica/genética , Ativação Transcricional
2.
Mol Cell Biol ; 26(6): 2109-17, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16507990

RESUMO

During mammalian dosage compensation, one of two X-chromosomes in female cells is inactivated. The choice of which X is silenced can be imprinted or stochastic. Although genetic loci influencing the choice decision have been identified, the primary marks for imprinting and random selection remain undefined. Here, we examined the role of DNA methylation, a mechanism known to regulate imprinting in autosomal loci, and sought to determine whether differential methylation on the two Xs might predict their fates. To identify differentially methylated domains (DMDs) at the X-inactivation center, we used bisulfite sequencing and methylation-sensitive restriction enzyme analyses. We found DMDs in Tsix and Xite, two genes previously shown to influence choice. Interestingly, the DMDs in Tsix lie within CTCF binding sites. Allelic methylation differences occur in gametes and are erased in embryonic stem cells carrying two active Xs. Because the pattern of DNA methylation mirrors events of X-inactivation, we propose that differential methylation of DMDs in Tsix and Xite constitute a primary mark for epigenetic regulation. The discovery of DMDs in CTCF sites draws further parallels between X-inactivation and autosomal imprinting.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Inativação do Cromossomo X/fisiologia , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Mutação , Oócitos/fisiologia , RNA Longo não Codificante , RNA não Traduzido/genética , Proteínas Repressoras/genética , Espermatozoides/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
3.
Mol Cell Biol ; 30(13): 3187-205, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20404085

RESUMO

Mammals compensate for unequal X-linked gene dosages between the sexes by inactivating one X chromosome in the female. In marsupials and in the early mouse embryo, X chromosome inactivation (XCI) is imprinted to occur selectively on the paternal X chromosome (X(P)). The mechanisms and events underlying X(P) imprinting remain unclear. Here, we find that the imprinted X(P) can be functionally divided into two domains, one comprising traditional coding genes (genic) and the other comprising intergenic repetitive elements. X(P) repetitive element silencing occurs by the two-cell stage, does not require Xist, and occurs several divisions prior to genic silencing. In contrast, genic silencing initiates at the morula-to-blastocyst stage and absolutely requires Xist. Genes translocate into the presilenced repeat region as they are inactivated, whereas active genes remain outside. Thus, during the gamete-embryo transition, imprinted XCI occurs in two steps, with repeat silencing preceding genic inactivation. Nucleolar association may underlie the epigenetic asymmetry of X(P) and X(M). We hypothesize that transgenerational information (the imprint) is carried by repeats from the paternal germ line or that, alternatively, repetitive elements are silenced at the two-cell stage in a parent-of-origin-specific manner. Our model incorporates aspects of the so-called classical, de novo, and preinactivation hypotheses and suggests that Xist RNA functions relatively late during preimplantation mouse development.


Assuntos
Inativação Gênica , Impressão Genômica , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Nucléolo Celular/metabolismo , Embrião de Mamíferos/fisiologia , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Knockout , RNA Longo não Codificante , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Sequências Repetitivas de Ácido Nucleico , Transgenes
4.
Cell ; 129(4): 693-706, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17512404

RESUMO

In mammalian females, two X chromosomes are epigenetically distinguished as active and inactive chromosomes to balance X-linked gene dosages between males and females. How the Xs are maintained differently in the same nucleus remains unknown. Here, we demonstrate that the inactive X (Xi) is targeted to a distinct nuclear compartment following pairing with its homologous partner. During mid-to-late S phase, 80%-90% of Xi contact the nucleolus and reside within a Snf2h-enriched ring. Autosomes carrying ectopic X-inactivation center sequences are also targeted to the perinucleolar compartment. Deleting Xist results in a loss of nucleolar association and an inability to maintain Xi heterochromatin, leading to Xi reactivation at the single gene level. We propose that the Xi must continuously visit the perinucleolar compartment to maintain its epigenetic state. These data raise a mechanism by which chromatin states can be replicated by spatial and temporal separation in the nucleus.


Assuntos
Nucléolo Celular/genética , Núcleo Celular/genética , Inativação Gênica , Fase S/genética , Inativação do Cromossomo X/genética , Cromossomo X/genética , Adenosina Trifosfatases/genética , Animais , Compartimento Celular/genética , Linhagem Celular , Linhagem Celular Transformada , Proteínas Cromossômicas não Histona/genética , Epigênese Genética/genética , Feminino , Masculino , Camundongos , RNA Longo não Codificante , RNA não Traduzido/genética
5.
Development ; 133(21): 4203-10, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17021040

RESUMO

The mouse Kcnq1 imprinted domain is located on distal chromosome 7 and contains several imprinted genes that are paternally repressed. Repression of these genes is regulated by a non-coding antisense transcript, Kcnq1ot1, which is paternally expressed. Maternal repression of Kcnq1ot1 is controlled by DNA methylation originating in the oocyte. Some genes in the region are imprinted only in the placenta, whereas others are imprinted in both extra-embryonic and embryonic lineages. Here, we show that Kcnq1ot1 is paternally expressed in preimplantation embryos from the two-cell stage, and that ubiquitously imprinted genes proximal to Kcnq1ot1 are already repressed in blastocysts, ES cells and TS cells. Repressive histone marks such as H3K27me3 are present on the paternal allele of these genes in both ES and TS cells. Placentally imprinted genes that are distal to Kcnq1ot1, by contrast, are not imprinted in blastocysts, ES or TS cells. In these genes, paternal silencing and differential histone marks arise during differentiation of the trophoblast lineage between E4.5 and E7.5. Our findings show that the dynamics during preimplantation development of gene inactivation and acquisition of repressive histone marks in ubiquitously imprinted genes of the Kcnq1 domain are very similar to those of imprinted X inactivation. By contrast, genes that are only imprinted in the placenta, while regulated by the same non-coding RNA transcript Kcnq1ot1, undergo epigenetic inactivation during differentiation of the trophoblast lineage. Our findings establish a model for how epigenetic gene silencing by non-coding RNA may depend on distance from the non-coding RNA and on lineage and differentiation specific factors.


Assuntos
Blastocisto/fisiologia , Epigênese Genética , Inativação Gênica , Impressão Genômica , Canal de Potássio KCNQ1/metabolismo , Alelos , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Canal de Potássio KCNQ1/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Placenta/citologia , Placenta/fisiologia , Trofoblastos/citologia , Trofoblastos/fisiologia , Inativação do Cromossomo X
6.
Nat Rev Genet ; 6(5): 410-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15818384

RESUMO

In mammals, sex is determined by differential inheritance of a pair of dimorphic chromosomes: the gene-rich X chromosome and the gene-poor Y chromosome. To balance the unequal X-chromosome dosage between the XX female and XY male, mammals have adopted a unique form of dosage compensation in which one of the two X chromosomes is inactivated in the female. This mechanism involves a complex, highly coordinated sequence of events and is a very different strategy from those used by other organisms, such as the fruitfly and the worm. Why did mammals choose an inactivation mechanism when other, perhaps simpler, means could have been used? Recent data offer a compelling link between ontogeny and phylogeny. Here, we propose that X-chromosome inactivation and imprinting might have evolved from an ancient genome-defence mechanism that silences unpaired DNA.


Assuntos
Mecanismo Genético de Compensação de Dose , Modelos Genéticos , Cromossomo X/genética , Animais , Filogenia
7.
Science ; 295(5553): 345-7, 2002 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11743158

RESUMO

In mammals, X-inactivation silences one of two female X chromosomes. Silencing depends on the noncoding gene, Xist (inactive X-specific transcript), and is blocked by the antisense gene, Tsix. Deleting the choice/imprinting center in Tsix affects X-chromosome selection. Here, we identify the insulator and transcription factor, CTCF, as a candidate trans-acting factor for X-chromosome selection. The choice/imprinting center contains tandem CTCF binding sites that function in an enhancer-blocking assay. In vitro binding is reduced by CpG methylation and abolished by including non-CpG methylation. We postulate that Tsix and CTCF together establish a regulatable epigenetic switch for X-inactivation.


Assuntos
Elementos Antissenso (Genética) , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Inativação Gênica , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Cromossomo X/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Impressão Genômica , Células HeLa , Humanos , Camundongos , Modelos Genéticos , RNA Longo não Codificante , RNA não Traduzido/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA