Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(27): 275709, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29658891

RESUMO

The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

2.
Nanotechnology ; 25(47): 475302, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25380080

RESUMO

We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ∼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.

3.
Nano Lett ; 13(9): 4068-74, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23981113

RESUMO

Hysteretic metal-insulator transitions (MIT) mediated by ionic dynamics or ferroic phase transitions underpin emergent applications for nonvolatile memories and logic devices. The vast majority of applications and studies have explored the MIT coupled to the electric field or temperarture. Here, we argue that MIT coupled to ionic dynamics should be controlled by mechanical stimuli, the behavior we refer to as the piezochemical effect. We verify this effect experimentally and demonstrate that it allows both studying materials physics and enabling novel data storage technologies with mechanical writing and current-based readout.


Assuntos
Metais/química , Nanotecnologia , Condutividade Elétrica , Armazenamento e Recuperação da Informação , Nanoestruturas/química
4.
Nanoscale ; 7(18): 8531-5, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25895727

RESUMO

Point contact Andreev reflection (PCAR) has become a standard method for measuring the spin polarization (P) of spintronic materials due to its unique simplicity and the firm physical ground, but it is still challenging to achieve a clean point contact between a superconductor (SC) and a metal (N) for implementing PCAR. In this work, we suggest a much simpler method for PCAR measurement, where a point contact between SC and N is provided by a metallic filament in a transition-metal oxide generated by electrical bias. This method has been successfully demonstrated using a structure composed of Nb/NiO/Pt, where P of the Ni filament was estimated to be about 40%, consistent with the known value of the bulk Ni. In addition, we investigated the dependence of the conductance spectrum on the measurement temperature and the magnetic field. We found that the superconductivity is not fully suppressed until 9 T far above the critical field of Nb, which is associated with the nm-sized constriction of our SC/N junction, much smaller than the coherence length of the SC.

5.
Sci Rep ; 5: 11279, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26161992

RESUMO

Resistive random access memory (ReRAM) devices have been extensively investigated resulting in significant enhancement of switching properties. However fluctuations in switching parameters are still critical weak points which cause serious failures during 'reading' and 'writing' operations of ReRAM devices. It is believed that such fluctuations may be originated by random creation and rupture of conducting filaments inside ReRAM oxides. Here, we introduce defective monolayer graphene between an oxide film and an electrode to induce confined current path distribution inside the oxide film, and thus control the creation and rupture of conducting filaments. The ReRAM device with an atomically thin interlayer of defective monolayer graphene reveals much reduced fluctuations in switching parameters compared to a conventional one. Our results demonstrate that defective monolayer graphene paves the way to reliable ReRAM devices operating under confined current path distribution.

6.
Sci Rep ; 4: 6871, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25362933

RESUMO

High-performance ultra-thin oxide layers are required for various next-generation electronic and optical devices. In particular, ultra-thin resistive switching (RS) oxide layers are expected to become fundamental building blocks of three-dimensional high-density non-volatile memory devices. Until now, special deposition techniques have been introduced for realization of high-quality ultra-thin oxide layers. Here, we report that ultra-thin oxide layers with reliable RS behavior can be self-assembled by field-induced oxygen migration (FIOM) at the interface of an oxide-conductor/oxide-insulator or oxide-conductor/metal. The formation via FIOM of an ultra-thin oxide layer with a thickness of approximately 2-5 nm and 2.5% excess oxygen content is demonstrated using cross-sectional transmission electron microscopy and secondary ion mass spectroscopy depth profile. The observed RS behavior, such as the polarity dependent forming process, can be attributed to the formation of an ultra-thin oxide layer. In general, as oxygen ions are mobile in many oxide-conductors, FIOM can be used for the formation of ultra-thin oxide layers with desired properties at the interfaces or surfaces of oxide-conductors in high-performance oxide-based devices.

7.
Nanoscale ; 4(6): 2029-33, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22334037

RESUMO

By confining columnar grains of textured oxide film using anodized aluminum oxide template, we could obtain a grain-boundary-free (GB-free) cuprous oxide (Cu(2)O) nanowire arrays with a narrow diameter distribution and a high density under the same electrochemical deposition condition. A two-terminal device fabricated using an individual GB-free nanowire and Au/Cr electrodes exhibits bipolar resistive switching contrary to the unipolar one of a textured film, and Schottky-like conduction. On the other hand, a nanowire device with Pt electrodes reveals non-switching behavior and Ohmic conduction. Thus, we can propose that the bipolar switching of a nanowire device with Au/Cr electrodes may result from the modulation of Schottky barrier at the interface by migration of oxygen vacancies while the unipolar one of a textured film may be defined as the bulky filamentary switching along the GBs in the GB-embedded texture films.


Assuntos
Cobre/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Semicondutores , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Propriedades de Superfície
8.
ACS Nano ; 5(8): 6417-24, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21777004

RESUMO

Monolayer graphene is one of the most interesting materials applicable to next-generation electronic devices due to its transport properties. However, realization of graphene devices requires suitable nanoscale lithography as well as a method to open a band gap in monolayer graphene. Nanoscale hydrogenation and oxidation are promising methods to open an energy band gap by modification of surface structures and to fabricate nanostructures such as graphene nanoribbons (GNRs). Until now it has been difficult to fabricate nanoscale devices consisting of both hydrogenated and oxidized graphene because the hydrogenation of graphene requires a complicated process composed of large-scale chemical modification, nanoscale patterning, and etching. We report on nanoscale hydrogenation and oxidation of graphene under normal atmospheric conditions and at room temperature without etching, wet process, or even any gas treatment by controlling just an external bias through atomic force microscope lithography. Both the lithographically defined nanoscale hydrogenation and oxidation have been confirmed by micro-Raman spectroscopy measurements. Patterned hydrogenated and oxidized graphene show insulating behaviors, and their friction values are several times larger than those of graphene. These differences can be used for fabricating electronic or electromechanical devices based on graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA