Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(3): 579-594, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36434430

RESUMO

A comparison study examines six different metal oxides (CuO, ZnO, Fe3O4, Co3O4, NiO, and α-MnO2) for the degradation of malachite green dye using four distinct processes. These processes are as follows: sonocatalysis (US/metal oxide), sonocatalysis under ultra-violet irradiation (US/metal oxide/UV), sonocatalysis in the presence of hydrogen peroxide (US/metal oxide/H2O2), and a combination of all these processes (US/metal oxide/UV/H2O2). The effective operating parameters, such as the dosage of metal oxide nanoparticles (MONPs), the type of the process, and the metal oxides' efficiency order, were studied. At the same reaction conditions, the sonophotocatalytic is the best process for all six MOsNPs, CuO was the better metal oxide than other MOsNPs, and at the sonocatalysis process, ZnO was the best metal oxide in other processes. It was found that the metal oxide order for sonocatalytic process is CuO > α-MnO2 ≥ ZnO > NiO ≥ Fe3O4 ≥ Co3O4 within 15-45 min. The order of (US/metal oxide/UV) process is ZnO ≥ NiO ≥ α-MnO2 > Fe3O4 ≥ CuO ≥ Co3O4 within 5-40 min. The order of (US/ MOsNPs/ H2O2) process is ZnO ≥ CuO ≥ α-MnO2 ≥ NiO > Co3O4 > Fe3O4 within 5-20 min. The maximum removal efficiency order of the sonophotocatalytic process is ZnO ≥ CuO > α-MnO2 > NiO > Fe3O4 ≥ Co3O4 within 2-8 min. The four processes degradation efficiency was in the order US/MOsNPs ˂ US/MOsNPs/UV ˂ US/MOsNPs/H2O2 ˂ (UV/Ultrasonic/MOsNPs/H2O2). Complete degradation of MG was obtained at 0.05 g/L MONPs and 1 mM of H2O2 using 296 W/L ultrasonic power and 15 W ultra-violet lamp (UV-C) within a reaction time of 8 min according to the MOsNPs type at the same sonophotocatalytic/H2O2 reaction conditions. The US/metal oxide/UV/H2O2 process is inexpensive, highly reusable, and efficient for degrading dyes in colored wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA