Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 3305-3313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247432

RESUMO

Purpose: The prevalence of diabetes mellitus has significantly increased, with 537 million individuals living with diabetes in 2021. Curcumin, a natural compound present in turmeric, has anti-inflammatory and antioxidant properties that aid in controlling diabetes. Curcumin can lower blood glucose levels, increase pancreatic cell function, and reduce insulin resistance. The pathophysiology of diabetes involves oxidative stress and endoplasmic reticulum stress, which can lead to cell death. This study aimed to evaluate the antidiabetic activity of curcumin in rats by administering it for a month and evaluating pancreatic tissue histology. Patients and Methods: STZ-induced diabetic rats were fed a high-fat diet containing glibenclamide, 200 mg/kg body weight (BW) curcumin, 400 mg/kg BW curcumin, or a placebo for 4 weeks. After intervention, blood glucose levels were measured, and the pancreatic tissue was examined. Blood glucose levels were measured at 0, 2, 4, 6, and 8 h. Results: One-way ANOVA was performed to measure the mean difference among the groups at 0, 2, 4, 6, and 8 h of observation, which reported a statistically significant difference (p < 0.05). The blood glucose levels decreased after 4 h in the group receiving curcumin. Histological evaluation of the pancreas showed slight hydropic degeneration after 4 weeks of curcumin treatment. Conclusion: Our study indicates that curcumin has a beneficial effect in diabetic rats by reducing blood glucose levels and a protective effect on the pancreas.

2.
PeerJ ; 12: e17890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148677

RESUMO

The increasing problem of antibiotic resistance in bacteria leads to an urgent need for new antimicrobial agents. Alternative treatments for bacterial infections need to be explored to tackle this issue. Plant-based substances are emerging as promising options. Manilkara zapota L. contains compounds with antibiotic activities, and anti-inflammatory, antitumor, antipyretic, and antioxidant properties. It has medicinal properties and contains bioactive compounds, like tannins, flavonoids, and triterpenoids. This review aimed to comprehensively evaluate the existing literature on the potential medicinal and therapeutic benefits of M. zapota in bacterial infections by utilizing data from in vivo and in vitro studies. M. zapota has the potential to be a nutritional source of antimicrobial food. Numerous preclinical studies have demonstrated the antibacterial activities of M. zapota and its components. The antibacterial mechanisms of this fruit could interact with bacterial cell structures such as cell walls or membranes.


Assuntos
Antibacterianos , Infecções Bacterianas , Manilkara , Extratos Vegetais , Manilkara/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Animais
3.
AIMS Microbiol ; 9(2): 218-227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091820

RESUMO

Antimicrobial resistance is the rising global health issue that should not be ignored. This problem needs to be addressed and professionally handled since it is starting to threaten global health, which eventually could lead to disaster. Extended spectrum beta lactamase (ESBL)-producing bacteria were found threatening lives, since most antibiotics were found to not be effective in treating patients with infections caused by those bacteria. ESBL-producing Escherichia coli and Klebsiella pneumoniae are the two most reported bacteria in causing the bacteremia and nosocomial infections worldwide. In this article, the prevalence of ESBL-producing E. coli and K. pneumoniae in causing blood stream and urinary tract infections in Indonesia were compared to the neighboring countries based on the global antimicrobial resistance surveillance system performed worldwide by World Health Organization (WHO). In this article, the prevalence of ESBL-producing E. coli and K. pneumoniae in Indonesia and its neighboring countries were assayed and compared in order to evaluate the antimicrobial resistances. By comparing the prevalence data to the neighboring countries, some insightful evidence and information was served to support improved health in Indonesia. Some hurdles and strategies in combating the antimicrobial resistances were further discussed. Eventually, an alternate solution to overcome the antimicrobial drug resistance should be well-provided, studied and implemented globally.

4.
J Adv Pharm Technol Res ; 11(4): 169-173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425699

RESUMO

Lime peel contains metabolic compounds that have lethal effects of bacterial cells, but its effect as an antibacterial modulate innate immunity pathways, especially toll-like receptor 4 (TLR-4) signaling pathway, is unclear. This study examined the effects of lime peel extract (LPE) on the activity of TLR 4 in Balb/c mice induced by Salmonella typhi. Mice were induced intraperitoneally and then 3 days after induction, LPE was given orally on two doses (510 and 750 mg/kg BW). The number of bacterial colonization was counted using peritoneal fluid samples by the method of plate count agar. Intervention LPE for 5 days can degrade TLR-4 and the number of colonies of S. typhi. On day 3 after was induced S. typhi, TLR-4 gene expression of Balb/c mice is increased. Postintervention LPE for 5 days, the expression of TLR-4 gene decreased, significantly different at a dose of 750 mg/kg BW (P = 0.04). There was a positive correlation between the expression of TLR-4 gene by the number of bacterial colonization, decreasing gene expression of TLR-4, the number of bacterial colonization is also getting smaller (P = 0.013, r = 0.408). LPE can modulate the TLR-4 signaling pathway in host immunity so that the gene TLR-4 is expressed fewer in numbers. This mechanism causes the bacterial colony number to decrease, not even growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA