Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985561

RESUMO

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Assuntos
Evolução Biológica , Embriófitas/genética , Genoma de Planta , Marchantia/genética , Adaptação Biológica , Embriófitas/fisiologia , Regulação da Expressão Gênica de Plantas , Marchantia/fisiologia , Anotação de Sequência Molecular , Transdução de Sinais , Transcrição Gênica
2.
Plant Physiol ; 188(4): 2228-2240, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34894269

RESUMO

Plasma membrane (PM) H+-ATPase in guard cells is activated by phosphorylation of the penultimate residue, threonine (Thr), in response to blue and red light, promoting stomatal opening. Previous in vitro biochemical investigation suggested that Mg2+- and Mn2+-dependent membrane-localized type 2C protein phosphatase (PP2C)-like activity mediates the dephosphorylation of PM H+-ATPase in guard cells. PP2C clade D (PP2C.D) was later demonstrated to be involved in PM H+-ATPase dephosphorylation during auxin-induced cell expansion in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether PP2C.D phosphatases are involved in PM H+-ATPase dephosphorylation in guard cells. Transient expression experiments using Arabidopsis mesophyll cell protoplasts revealed that all PP2C.D isoforms dephosphorylate the endogenous PM H+-ATPase. We further analyzed PP2C.D6/8/9, which display higher expression levels than other isoforms in guard cells, observing that pp2c.d6, pp2c.d8, and pp2c.d9 single mutants showed similar light-induced stomatal opening and phosphorylation status of PM H+-ATPase in guard cells as Col-0. In contrast, the pp2c.d6/9 double mutant displayed wider stomatal apertures and greater PM H+-ATPase phosphorylation in response to blue light, but delayed dephosphorylation of PM H+-ATPase in guard cells; the pp2c.d6/8/9 triple mutant showed similar phenotypes to those of the pp2c.d6/9 double mutant. Taken together, these results indicate that PP2C.D6 and PP2C.D9 redundantly mediate PM H+-ATPase dephosphorylation in guard cells. Curiously, unlike auxin-induced cell expansion in seedlings, auxin had no effect on the phosphorylation status of PM H+-ATPase in guard cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Luz , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 2C/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
3.
New Phytol ; 236(3): 864-877, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35976788

RESUMO

Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood. Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene. The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+ ) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+ . This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening. Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Humanos , Luz , Magnésio/metabolismo , Magnésio/farmacologia , Mutação/genética , Estômatos de Plantas/genética , Vacúolos/metabolismo
4.
Plant J ; 104(3): 679-692, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32780529

RESUMO

Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Luz , Mutação , Fosforilação , Fototropismo , Canais de Potássio/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética
5.
Plant Physiol ; 183(1): 304-316, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32193212

RESUMO

Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Fototropinas/metabolismo , Fototropismo/genética , Fototropismo/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia
6.
Opt Express ; 28(8): 11652-11665, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403672

RESUMO

This study shows that high-performance metasurface polarizers are possible in the deep ultraviolet (DUV) region. A metasurface consisting of a trilayer of an Al (Aluminum) grating, an Al2O3 (Alumina) thin film, and an Al thin film serves as a mirror with high reflectance for light with polarization parallel to the grooves. The reflectance for polarization perpendicular to the grooves vanishes owing to destructive interference between the propagating and gap surface plasmon polaritons. As a result, the metasurface plays the role of a polarizer with a high extinction ratio exceeding 6.2 × 106. This study also shows that the bandwidth is improved by adjusting the incident angle, period, and the Al2O3 layer of the metasurface. The performance of the metasurface polarizer is discussed experimentally. Our finding paves the way for realizing high-performance polarizers in the DUV region.

7.
Photochem Photobiol Sci ; 19(1): 88-98, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31904040

RESUMO

Stomatal pores, which are surrounded by pairs of guard cells in the plant epidermis, regulate gas exchange between plants and the atmosphere, thereby controlling photosynthesis and transpiration. Blue light works as a signal to guard cells, to induce intracellular signaling and open stomata. Blue light receptor phototropins (phots) are activated by blue light; phot-mediated signals promote plasma membrane (PM) H+-ATPase activity via C-terminal Thr phosphorylation, serving as the driving force for stomatal opening in guard cells. However, the details of this signaling process are not fully understood. In this study, through an in vitro screening of phot-interacting protein kinases, we obtained the CBC1 and CBC2 that had been reported as signal transducers in stomatal opening. Promoter activities of CBC1 and CBC2 indicated that both genes were expressed in guard cells. Single and double knockout mutants of CBC1 and CBC2 showed no lesions in the context of phot-mediated phototropism, chloroplast movement, or leaf flattening. In contrast, the cbc1cbc2 double mutant showed larger stomatal opening under both dark and blue light conditions. Interestingly, the level of phosphorylation of C-terminal Thr of PM H+-ATPase was higher in double mutant guard cells. The larger stomatal openings of the double mutant were effectively suppressed by the phytohormone abscisic acid (ABA). CBC1 and CBC2 interacted with BLUS1 and PM H+-ATPase in vitro. From these results, we conclude that CBC1 and CBC2 act as negative regulators of stomatal opening, probably via inhibition of PM H+-ATPase activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/enzimologia , Estômatos de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Fosforilação
8.
Plant Cell Physiol ; 60(5): 935-944, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649552

RESUMO

Brassinosteroids (BRs) are steroid phytohormones that regulate plant growth and development, and promote cell elongation at least in part via the acid-growth process. BRs have been suggested to induce cell elongation by the activating plasma membrane (PM) H+-ATPase. However, the mechanism by which BRs activate PM H+-ATPase has not been clarified. In this study, we investigated the effects of BR on hypocotyl elongation and the phosphorylation status of a penultimate residue, threonine, of PM H+-ATPase, which affects the activation, in the etiolated seedlings of Arabidopsis thaliana. Brassinolide (BL), an active endogenous BR, induced hypocotyl elongation, phosphorylation of the penultimate, threonine residue of PM H+-ATPase, and binding of the 14-3-3 protein to PM H+-ATPase in the endogenous BR-depleted seedlings. Changes in both BL-induced elongation and phosphorylation of PM H+-ATPase showed similar concentration dependency. BL did not induce phosphorylation of PM H+-ATPase in the BR receptor mutant bri1-6. In contrast, bikinin, a specific inhibitor of BIN2 that acts as a negative regulator of BR signaling, induced its phosphorylation. Furthermore, BL accumulated the transcripts of SMALL AUXIN UP RNA 9 (SAUR9) and SAUR19, which suppress dephosphorylation of the PM H+-ATPase penultimate residue by inhibiting D-clade type 2C protein phosphatase in the hypocotyls of etiolated seedlings. From these results, we conclude that BL-induced phosphorylation of PM H+-ATPase penultimate residue is mediated via the BRI1-BIN2 signaling pathway, together with the accumulation of SAURs during hypocotyl elongation.


Assuntos
Brassinosteroides/farmacologia , Membrana Celular/enzimologia , Hipocótilo/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
9.
Plant Cell Physiol ; 60(4): 875-887, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649470

RESUMO

A variety of cellular metabolic reactions generate inorganic pyrophosphate (PPi) as an ATP hydrolysis byproduct. The vacuolar H+-translocating pyrophosphatase (H+-PPase) loss-of-function fugu5 mutant is susceptible to drought and displays pleotropic postgerminative growth defects due to excess PPi. It was recently reported that stomatal closure after abscisic acid (ABA) treatment is delayed in vhp1-1, a fugu5 allele. In contrast, we found that specific removal of PPi rescued all of the above fugu5 developmental and growth defects. Hence, we speculated that excess PPi itself, rather than vacuolar acidification, might delay stomatal closure. To test this hypothesis, we constructed transgenic plants expressing the yeast IPP1 gene (encoding a cytosolic pyrophosphatase) driven by a guard cell-specific promoter (pGC1::IPP1) in the fugu5 background. Our measurements confirmed stomatal closure defects in fugu5, further supporting a role for H+-PPase in stomatal functioning. Importantly, while pGC1::IPP1 transgenics morphologically mimicked fugu5, stomatal closure was restored in response to ABA and darkness. Quantification of water loss revealed that fugu5 stomata were almost completely insensitive to ABA. In addition, growth of pGC1::IPP1 plants was promoted compared to fugu5 throughout their life; however, it did not reach the wild type level. fugu5 also displayed an increased stomatal index, in violation of the one-cell-spacing rule, and phenotypes recovered upon removal of PPi by pAVP1::IPP1 (FUGU5, VHP1 and AVP1 are the same gene encoding H+-PPase), but not in the pGC1::IPP1 line. Taken together, these results clearly support our hypothesis that dysfunction in stomata is triggered by excess PPi within guard cells, probably via perturbed guard cell metabolism.


Assuntos
Difosfatos/metabolismo , Estômatos de Plantas/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Mutação/genética , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia
10.
J Exp Bot ; 70(4): 1367-1374, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576518

RESUMO

Blue light (BL) is a fundamental cue for stomatal opening in both C3 and C4 plants. However, it is unknown whether crassulacean acid metabolism (CAM) plants open their stomata in response to BL. We investigated stomatal BL responses in the obligate CAM plants Kalanchoe pinnata and Kalanchoe daigremontiana that characteristically open their stomata at night and close them for part of the day, as contrasted with C3 and C4 plants. Stomata opened in response to weak BL superimposed on background red light in both intact leaves and detached epidermal peels of K. pinnata and K. daigremontiana. BL-dependent stomatal opening was completely inhibited by tautomycin and vanadate, which repress type 1 protein phosphatase and plasma membrane H+-ATPase, respectively. The plasma membrane H+-ATPase activator fusicoccin induced stomatal opening in the dark. Both BL and fusicoccin induced phosphorylation of the guard cell plasma membrane H+-ATPase in K. pinnata. These results indicate that BL-dependent stomatal opening occurs in the obligate CAM plants K. pinnata and K. daigremontiana independently of photosynthetic CO2 assimilation mode.


Assuntos
Ciclo do Carbono/efeitos da radiação , Kalanchoe/metabolismo , Luz , Estômatos de Plantas/efeitos da radiação , Kalanchoe/enzimologia , Kalanchoe/efeitos da radiação , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/metabolismo , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 113(15): 4218-23, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035938

RESUMO

Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Ozônio/toxicidade , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Poluentes Atmosféricos/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas , Herbicidas/toxicidade , Oxidantes/toxicidade , Paraquat/toxicidade , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal , Plantas Geneticamente Modificadas/fisiologia , Canais de Potássio/fisiologia , Dióxido de Enxofre/toxicidade , Fatores de Transcrição/genética
12.
J Biol Chem ; 292(33): 13843-13852, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28663371

RESUMO

Phototropins (phots) are plasma membrane-associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light-absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A'α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A'α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Ligação a DNA/metabolismo , Fosfoproteínas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dicroísmo Circular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ativação Enzimática/efeitos da radiação , Estabilidade Enzimática/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação/efeitos da radiação , Processos Fotoquímicos , Fototropismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/efeitos da radiação , Mutação Puntual , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas Serina-Treonina Quinases , Estabilidade Proteica/efeitos da radiação , Proteínas Recombinantes de Fusão/metabolismo
13.
Plant Cell Physiol ; 58(6): 1048-1058, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407091

RESUMO

Stomata within the plant epidermis regulate CO2 uptake for photosynthesis and water loss through transpiration. Stomatal opening in Arabidopsis thaliana is determined by various factors, including blue light as a signal and multiple phytohormones. Plasma membrane transporters, including H+-ATPase, K+ channels and anion channels in guard cells, mediate these processes, and the activities and expression levels of these components determine stomatal aperture. However, the regulatory mechanisms involved in these processes are not fully understood. In this study, we used infrared thermography to isolate a mutant defective in stomatal opening in response to light. The causative mutation was identified as an allele of the brassinosteroid (BR) biosynthetic mutant dwarf5. Guard cells from this mutant exhibited normal H+-ATPase activity in response to blue light, but showed reduced K+ accumulation and inward-rectifying K+ (K+in) channel activity as a consequence of decreased expression of major K+in channel genes. Consistent with these results, another BR biosynthetic mutant, det2-1, and a BR receptor mutant, bri1-6, exhibited reduced blue light-dependent stomatal opening. Furthermore, application of BR to the hydroponic culture medium completely restored stomatal opening in dwarf5 and det2-1 but not in bri1-6. However, application of BR to the epidermis of dwarf5 did not restore stomatal response. From these results, we conclude that endogenous BR acts in a long-term manner and is required in guard cells with the ability to open stomata in response to light, probably through regulation of K+in channel activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Estômatos de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Estômatos de Plantas/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
14.
Plant Physiol ; 171(1): 580-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27016447

RESUMO

Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fotossíntese/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Açúcares/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diurona/farmacologia , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Células do Mesofilo/metabolismo , Mutação , Fosforilação , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , ATPases Translocadoras de Prótons/genética
15.
Opt Express ; 25(16): A639-A648, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041036

RESUMO

We propose a method to determine the current injection efficiency (CIE) and internal quantum efficiency (IQE) of light-emitting diodes (LEDs) during current injection. The method is based on fourth-order polynomial fitting of a modified rate equation to electroluminescence data. Our method can extract the CIE at low injection current densities, unlike conventional methods that generally assume the CIE to be unity. We apply the method to AlGaN-based deep-ultraviolet LEDs. Results show that the CIE was only approximately 51% at low injection current densities and was almost independent of injection current density up to 100 A/cm2. The peak IQE was 77%.

16.
Proc Natl Acad Sci U S A ; 111(1): 533-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367097

RESUMO

Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/enzimologia , ATPases Translocadoras de Prótons/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carbono/química , Dióxido de Carbono/química , Membrana Celular/metabolismo , Luz , Fenótipo , Fotossíntese , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Potássio/química , Regiões Promotoras Genéticas , ATPases Translocadoras de Prótons/metabolismo
17.
Plant Cell Physiol ; 57(10): 2194-2201, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27503216

RESUMO

The plant plasma membrane (PM) H+-ATPase regulates pH homeostasis and cell elongation in roots through the formation of an electrochemical H+ gradient across the PM and a decrease in apoplastic pH; however, the detailed signaling for the regulation of PM H+-ATPases remains unclear. Here, we show that an auxin influx carrier, AUXIN RESISTANT1 (AUX1), is required for the maintenance of PM H+-ATPase activity and proper root elongation. We isolated a low pH-hypersensitive 1 (loph1) mutant by a genetic screen of Arabidopsis thaliana on low pH agar plates. The loph1 mutant is a loss-of-function mutant of the AUX1 gene and exhibits a root growth retardation restricted to the low pH condition. The ATP hydrolysis and H+ extrusion activities of the PM H+-ATPase were reduced in loph1 roots. Furthermore, the phosphorylation of the penultimate threonine of the PM H+-ATPase was reduced in loph1 roots under both normal and low pH conditions without reduction of the amount of PM H+-ATPase. Expression of the DR5:GUS reporter gene and auxin-responsive genes suggested that endogenous auxin levels were lower in loph1 roots than in the wild type. The aux1-7 mutant roots also exhibited root growth retardation in the low pH condition like the loph1 roots. These results indicate that AUX1 positively regulates the PM H+-ATPase activity through maintenance of the auxin accumulation in root tips, and this process may serve to maintain root elongation especially under low pH conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Membrana Celular/enzimologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Concentração de Íons de Hidrogênio , Mutação/genética , Fenótipo , Fosforilação , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
18.
J Nanosci Nanotechnol ; 16(4): 3206-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451605

RESUMO

We fabricated a grating-structured electrode made of indium-doped zinc oxide (IZO) with a high refractive index (approximately 2) for a bacteriorhodopsin (bR) photocell. We investigated the photocurrent characteristics of the bR photocell and demonstrated that the photocurrent values from the bR/IZO electrode with the grating structure with a grating period of 340 nm were more than 3.5-4 times larger than those without the grating structure. The photocurrent enhancement was attributed to the resonance effect due to light coupling to the grating structure as well as the scattering effect based on the experimental results and analysis using the photonic band structure determined using finite-difference time-domain (FDTD) simulations. The refractive index of the bR film in electrolyte solution (1.40) used in the FDTD simulations was estimated by analyzing the extinction peak wavelength of 20-nm gold colloids in the bR film. Our results indicate that the grating- or photonic-crystal-structured transparent conductive oxide (TCO) electrodes can increase the light use efficiency of various bR devices such as artificial photosynthetic devices, solar cells, and light-sensing devices.


Assuntos
Bacteriorodopsinas/química , Fontes de Energia Bioelétrica , Condutometria/instrumentação , Eletrodos , Fotometria/instrumentação , Refratometria/instrumentação , Bacteriorodopsinas/efeitos da radiação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Lentes , Luz , Óxidos/química
19.
Plant Cell Physiol ; 56(4): 640-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588388

RESUMO

Stomatal movements are regulated by multiple environmental signals. Recent investigations indicate that photoperiodic flowering components, such as CRY, GI, CO, FT and TSF, are expressed in guard cells and positively affect stomatal opening in Arabidopsis thaliana. Here we show that SOC1, which encodes a MADS box transcription factor and integrates multiple flowering signals, also exerts a positive effect on stomatal opening. FLC encodes a potent repressor of FT and SOC1, and FRI acts as an activator of FLC. Thus, we examined stomatal phenotypes in FRI-Col, which contains an active FRI allele of accession Sf-2 by introgression. We found higher expression of FLC and lower expression of FT, SOC1 and TSF in guard cells from FRI-Col than in those from Col. Light-induced stomatal opening was significantly suppressed in FRI-Col. Interestingly, vernalization of FRI-Col partially restored light-induced stomatal opening, concomitant with a decrease of FLC and increase of FT, SOC1 and TSF. Furthermore, we observed the constitutive open-stomata phenotype in transgenic plants overexpressing SOC1-GFP (green fluorescent protein) in guard cells (SOC1-GFP overexpressor), and found that light-induced stomatal opening was significantly suppressed in a soc1 knockout mutant. RNA sequencing using epidermis from the SOC1-GFP overexpressor revealed that the expression levels of several genes involved in stomatal opening, such as BLUS1 and the plasma membrane H(+)-ATPases, were higher than those in background plants. From these results, we conclude that SOC1 is involved in the regulation of stomatal opening via transcriptional regulation in guard cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/metabolismo , Proteínas de Domínio MADS/metabolismo , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Luz , Mutação/genética , Fenótipo , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos da radiação , Regulação para Cima/efeitos da radiação
20.
J Integr Plant Biol ; 57(1): 93-105, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25231366

RESUMO

In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Hydrocharitaceae/citologia , Hydrocharitaceae/efeitos da radiação , Luz , Células Vegetais/metabolismo , Epiderme Vegetal/citologia , Sequência de Aminoácidos , Anticorpos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Reações Cruzadas , Genes de Plantas , Hydrocharitaceae/genética , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Peso Molecular , Peptídeos/metabolismo , Fosforilação/efeitos da radiação , Fototropinas/química , Fototropinas/metabolismo , Células Vegetais/efeitos da radiação , Epiderme Vegetal/efeitos da radiação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA