Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7853): 195-204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828315

RESUMO

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Assuntos
Células/metabolismo , Edição de Genes/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organização & administração , Animais , Terapia Genética , Objetivos , Humanos , Estados Unidos
2.
Blood ; 136(24): 2824-2837, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32614949

RESUMO

von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized in endothelial cells and stored in Weibel-Palade bodies (WPBs). Understanding the mechanisms underlying WPB biogenesis and exocytosis could enable therapeutic modulation of endogenous VWF, yet optimal targets for modulating VWF release have not been established. Because biogenesis of lysosomal related organelle-2 (BLOC-2) functions in the biogenesis of platelet dense granules and melanosomes, which like WPBs are lysosome-related organelles, we hypothesized that BLOC-2-dependent endolysosomal trafficking is essential for WPB biogenesis and sought to identify BLOC-2-interacting proteins. Depletion of BLOC-2 caused misdirection of cargo-carrying transport tubules from endosomes, resulting in immature WPBs that lack endosomal input. Immunoprecipitation of BLOC-2 identified the exocyst complex as a binding partner. Depletion of the exocyst complex phenocopied BLOC-2 depletion, resulting in immature WPBs. Furthermore, releasates of immature WPBs from either BLOC-2 or exocyst-depleted endothelial cells lacked high-molecular weight (HMW) forms of VWF, demonstrating the importance of BLOC-2/exocyst-mediated endosomal input during VWF maturation. However, BLOC-2 and exocyst showed very different effects on VWF release. Although BLOC-2 depletion impaired exocytosis, exocyst depletion augmented WPB exocytosis, indicating that it acts as a clamp. Exposure of endothelial cells to a small molecule inhibitor of exocyst, Endosidin2, reversibly augmented secretion of mature WPBs containing HMW forms of VWF. These studies show that, although BLOC-2 and exocyst cooperate in WPB formation, only exocyst serves to clamp WPB release. Exocyst function in VWF maturation and release are separable, a feature that can be exploited to enhance VWF release.


Assuntos
Exocitose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Limoninas/farmacologia
3.
Proc Natl Acad Sci U S A ; 115(19): E4377-E4385, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29610350

RESUMO

The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.


Assuntos
Actinas/metabolismo , Forma Celular/fisiologia , Membrana Eritrocítica/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Trifosfato de Adenosina/metabolismo , Forma Celular/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos
4.
Eur J Prosthodont Restor Dent ; 26(2): 54-61, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29517875

RESUMO

AIMS: The purpose of this study was to methodically review the literature concerning the success and survival rates of zirconia fixed dental prostheses (FDPs). METHODS: A systematic search was conducted of MEDLINE, Elsevier and the Cochrane Library to identify relevant articles about zirconia FDPs. In order to obtain suitable articles, rigorous criteria were applied. The minimum follow-up period was five years. RESULTS: From a total of 986 articles identified in the first electronic search, only 10 matched the inclusion criteria. A total of 368 patients with 430 zirconia FDPs were included in this systematic review. The survival rate was 89.43% ± 10.01% and chipping of the veneering ceramic occurred in 16.97% of the cases. CONCLUSION: Zirconia-based fixed dental prostheses perform reasonably well and can serve as an alternative to metal-ceramic fixed dental prostheses.


Assuntos
Materiais Dentários/química , Planejamento de Prótese Dentária , Falha de Restauração Dentária , Prótese Parcial Fixa , Zircônio/química , Fatores Etários , Humanos
5.
J Biol Chem ; 288(43): 31139-53, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24022490

RESUMO

Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of spleen and liver where resident macrophages remove the particles, but allow the RBC to return unharmed to the circulation. This process is called immune-adherence clearance. In this study we found using luminometric- and fluorescence-based methods that ligation of CR1 on human RBC promotes ATP release. Our data show that CR1-mediated ATP release does not depend on Ca(2+) or enzymes previously shown to mediate an increase in membrane deformability promoted by CR1 ligation. Furthermore, ATP release following CR1 ligation increases the mobility of the lipid fraction of RBC membranes, which in turn facilitates CR1 clustering, and thereby enhances the binding avidity of complement-opsonized particles to the RBC CR1. Finally, we have found that RBC-derived ATP has a stimulatory effect on phagocytosis of immune-adherent immune complexes.


Assuntos
Trifosfato de Adenosina/metabolismo , Eritrócitos/metabolismo , Capeamento Imunológico , Receptores de Complemento 3b/metabolismo , Trifosfato de Adenosina/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Eritrócitos/citologia , Eritrócitos/imunologia , Feminino , Humanos , Masculino , Lipídeos de Membrana/imunologia , Lipídeos de Membrana/metabolismo , Fagocitose/imunologia , Receptores de Complemento 3b/imunologia
6.
Crit Care Med ; 42(5): e364-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24448198

RESUMO

OBJECTIVE: Complement system is activated in patients with trauma. Although complement activation is presumed to contribute to organ damage and constitutional symptoms, little is known about the involved mechanisms. Because complement components may deposit on RBCs, we asked whether complement deposits on the surface of RBC in trauma and whether such deposition alters RBC function. DESIGN: A prospective experimental study. SETTING: Research laboratory. SUBJECTS: Blood samples collected from 42 trauma patients and 21 healthy donors. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: RBC and sera were collected from trauma patients and control donors. RBCs from trauma patients (n = 40) were found to display significantly higher amounts of C4d on their surface by flow cytometry compared with RBCs from control (n = 17) (p < 0.01). Increased amounts of iC3b were found in trauma sera (n = 27) (vs 12 controls, p < 0.01) by enzyme-linked immunosorbent assay. Incubation of RBC from universal donors (type O, Rh negative) with trauma sera (n = 10) promoted C4d deposition on their surface (vs six controls, p< 0.05). Complement-decorated RBC (n = 6) displayed limited their deformability (vs six controls, p < 0.05) in two-dimensional microchannel arrays. Incubation of RBC with trauma sera (n = 10) promoted the phosphorylation of band 3, a cytoskeletal protein important for the function of the RBC membrane (vs eight controls, p < 0.05), and also accelerated calcium influx (n = 9) and enhanced nitric oxide production (n = 12) (vs four and eight controls respectively, p < 0.05) in flow cytometry. CONCLUSIONS: Our study found the presence of extensive complement activation in trauma patients and presents new evidence in support of the hypothesis that complement activation products deposit on the surface of RBC. Such deposition could limit RBC deformability and promote the production of nitric oxide. Our findings suggest that RBC in trauma patients malfunctions, which may explain organ damage and constitutional symptoms that is not accounted for otherwise by previously known pathophysiologic mechanisms.


Assuntos
Cálcio/sangue , Ativação do Complemento/fisiologia , Eritrócitos/metabolismo , Óxido Nítrico/sangue , Fragmentos de Peptídeos/sangue , Ferimentos e Lesões/sangue , Adulto , Idoso , Estudos de Casos e Controles , Complemento C3b/análise , Complemento C4b , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ferimentos e Lesões/complicações
7.
Artigo em Inglês | MEDLINE | ID: mdl-37424835

RESUMO

Quantitative angiography (QAngio) may provide hemodynamic information during neurointerventional procedures through imaging biomarkers related to contrast flow. The standard clinical implementation of QAngio is limited by projection imaging: analysis of contrast motion within complex 3D geometries is restricted to 1-2 projection views, truncating the potential wealth of imaging biomarkers related to disease progression or efficacy of treatment. To understand the limitations of 2D biomarkers, we propose the use of in-silico contrast distributions to investigate the potential benefits of 3D-QAngio within the context of neurovascular hemodynamics. Ground-truth in-silico contrast distributions were generated in two patient-specific intracranial aneurysm models, accounting for the physical interactions of contrast media and blood. A short bolus of contrast was utilized to obtain full a wash-in/ wash-out cycle within the aneurysm ROI. Simulated angiograms mimicking clinical cone-beam CT (CBCT) acquisitions were then generated, and volumetric contrast distributions were reconstructed to analyze bulk contrast flow. The ground-truth 3D-CFD, reconstructed 3D-CBCT-DSA, and 2D-DSA projections were used to extract QAngio parameters related to contrast time dilution curves, such as area under the curve (AUC), peak height (PH), mean-transit-time (MTT), time-to-peak (TTP), and time to arrival (TTA). An initial comparison of quantitative flow parameters in both 2D and 3D, in a smaller and larger aneurysm, indicated that 3D-QAngio can provide a good description of bulk flow characteristics (TTA, TTP, MTT), but recovery of integral parameters (PH, AUC) aneurysms is limited. Nonetheless, incorporation of 3D-QAngio methods may provide additional insight into our understanding of abnormal vascular flow patterns.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37425069

RESUMO

1000 fps HSA enables visualization of flow details, which may be important in accurately guiding interventional procedures; however, single-plane imaging may lack clear visualization of vessel geometry and flow detail. The previously presented high-speed orthogonal biplane imaging may overcome these limitations but may still result in foreshortening of vessel morphology. In certain morphologies, acquiring two non-orthogonal biplane projections at multiple angles can provide better flow detail rather than a standard orthogonal biplane acquisition. Flow studies of aneurysm models were performed, where simultaneous biplane acquisitions at various angles separating the two detector views allowed for better evaluation of morphology and flow. 3D-printed, patient-specific internal carotid artery aneurysm models were imaged with various non-orthogonal angles between the two high-speed photon-counting detectors (7.5 cm x 5 cm FOV) to provide frame-correlated simultaneous 1000-fps image sequences. Fluid dynamics were visualized in multi-angled planes of each model using automated injections of iodine contrast media. The resulting dual simultaneous frame-correlated 1000-fps acquisitions from multiple planes of each aneurysm model provided improved visualization of complex aneurysm geometries and flow streamlines. Multi-angled biplane acquisitions with frame correlation allows for further understanding of aneurysm morphology and flow details: additionally, the ability to recover fluid dynamics at depth enables accurate analysis of 3D flow streamlines, and it is expected that multiple-planar views will enable better volumetric flow visualization and quantification. Such better visualization has the potential to improve interventional procedures.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37425070

RESUMO

A significant challenge regarding the treatment of aneurysms is the variability in morphology and analysis of abnormal flow. With conventional DSA, low frame rates limit the flow information available to clinicians at the time of the vascular intervention. With 1000 fps High-Speed Angiography (HSA), high frame rates enable flow details to be better resolved for endovascular interventional guidance. The purpose of this work is to demonstrate how 1000 fps biplane-HSA can be used to differentiate flow features, such as vortex formation and endoleaks, amongst patient-specific internal carotid artery aneurysm phantoms pre- and post-endovascular intervention using an in-vitro flow setup. The aneurysm phantoms were attached to a flow loop configured to a carotid waveform, with automated injections of contrast media. Simultaneous Biplane High-Speed Angiographic (SB- HSA) acquisitions were obtained at 1000 fps using two photon-counting detectors with the respective aneurysm and inflow/ outflow vasculature in the FOV. After x-rays were turned on, the detector acquisitions occurred simultaneously, during which iodine contrast was injected at a continuous rate. A pipeline stent was then deployed to divert flow from the aneurysm, and image sequences were once again acquired using the same parameters. Optical Flow, an algorithm that calculates velocity based on spatial-temporal intensity changes between pixels, was used to derive velocity distributions from HSA image sequences. Both the image sequences and velocity distributions indicate detailed changes in flow features amongst the aneurysms before and after deployment of the interventional device. SB-HSA can provide detailed flow analysis, including streamline and velocity changes, which may be beneficial for interventional guidance.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37425071

RESUMO

Cerebral aneurysm (CA) rupture is one of the major causes of hemorrhagic stroke. During endovascular therapy (ET), neurointerventionalists rely on qualitative image sequences and do not have access to crucial quantitative hemodynamic information. Quantifying angiographic image sequences can provide vital information, but it is not possible to perform this in a controlled manner in vivo. Computational fluid dynamics (CFD) is a valuable tool capable of providing high fidelity quantitative data by replicating the blood flow physics within the cerebrovasculature. In this work, we use simulated angiograms (SA) to quantify the hemodynamic interaction with a clinically utilized contrast agent. SA enables extraction of time density curves (TDC) within the desired region of interest to analyze hemodynamic parameters such as time to peak (TTP) and mean transit time (MTT) within the aneurysm. We present on the quantification of several hemodynamic parameters of interest for multiple, clinically-relevant scenarios such as variable contrast injection duration and bolus volumes for 7 patient-specific CA geometries. Results indicate that utilizing these analyses provides valuable hemodynamic information relating vascular and aneurysm morphology, contrast flow conditions and injection variability. The injected contrast circulates for multiple cardiac cycles within the aneurysmal region, especially for larger aneurysms and tortuous vasculature. The SA approach enables determination of angiographic parameters for each scenario. Together, these have the potential to overcome the existing barriers in quantifying angiographic procedures in vitro or in vivo, and can provide clinically valuable hemodynamic insights for CA treatment.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37425072

RESUMO

3D hemodynamic distributions are useful for the diagnosis and treatment of aneurysms. Detailed blood-flow patterns and derived velocity maps can be obtained using 1000 fps High Speed Angiography (HSA). The novel orthogonal Simultaneous Biplane High-Speed Angiography (SB-HSA) system enables flow information to be quantified in multiple planes, and with additional components of flow at depth, accurate 3D flow distributions are available. Computational Fluid Dynamics (CFD) is the current standard for derivation of volumetric flow distributions, but obtaining solution convergence is computationally expensive and time intensive. More importantly, matching in-vivo boundary conditions is non-trivial. Therefore, an experimentally derived 3D flow distribution method could offer realistic results with less computation time. Using SB-HSA image sequences, 3D X-Ray Particle Image Velocimetry (3D-XPIV) was explored as a new method for assessing 3D flow. 3D-XPIV was demonstrated using an in-vitro setup, where a patient-specific internal carotid artery aneurysm model was attached to a flow loop, and an automated injection of iodinated microspheres was used as a flow tracer. Two 1000 fps photon-counting detectors were placed orthogonally with the aneurysm model in the FOV of both planes. Frame-synchronization of the two detectors made correlation of single-particle velocity components at a given timepoint possible. With frame-rates of 1000 fps, small particle displacements between frames resolved realistic time varying flow, where accurate velocity distributions depended on near-instantaneous velocities. 3D-XPIV velocity distributions were compared to CFD velocity distributions, where the simulation boundary conditions matched the in-vitro setup. Results showed similar velocity distributions between CFD and 3D-XPIV.

12.
J Extracell Biol ; 2(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37942280

RESUMO

Extracellular vesicles (EVs) are membrane-bound structures released by cells and tissues into biofluids, involved in cell-cell communication. In humans, circulating red blood cells (RBCs), represent the most common cell-type in the body, generating daily large numbers of microvesicles. In vitro, RBC vesiculation can be mimicked by stimulating RBCs with calcium ionophores, such as ionomycin and A23187. The fate of microvesicles released during in vivo aging of RBCs and their interactions with circulating cells is hitherto unknown. Using SEC plus DEG isolation methods, we have found that human RBCs generate microvesicles with two distinct sizes, densities, and protein composition, identified by flow cytometry, and MRPS, and further validated by immune TEM. Furthermore, proteomic analysis revealed that RBC-derived microvesicles (RBC-MVs) are enriched in proteins with important functions in ion channel regulation, calcium homeostasis, and vesicular transport, such as of sorcin, stomatin, annexin A7, and RAB proteins. Cryo-electron microscopy identified two separate pathways of RBC-MV-neutrophil interaction, direct fusion with the plasma membrane and internalization, respectively. Functionally, RBC-MVs decrease neutrophil ability to phagocytose E. coli but do not affect their survival at 24 hrs. This work brings new insights regarding the complexity of the RBC-MVs biogenesis, as well as their possible role in circulation.

13.
J Extracell Vesicles ; 12(2): e12305, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36775986

RESUMO

Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Estados Unidos , Vesículas Extracelulares/metabolismo , Comunicação Celular , Ácidos Nucleicos/metabolismo , Pulmão/metabolismo , Sono
14.
Blood ; 116(26): 6063-71, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20861458

RESUMO

Microbes as well as immune complexes and other continuously generated inflammatory particles are efficiently removed from the human circulation by red blood cells (RBCs) through a process called immune-adherence clearance. During this process, RBCs use complement receptor 1 (CR1, CD35) to bind circulating complement-opsonized particles and transfer them to resident macrophages in the liver and spleen for removal. We here show that ligation of RBC CR1 by antibody and complement-opsonized particles induces a transient Ca(++) influx that is proportional to the RBC CR1 levels and is inhibited by T1E3 pAb, a specific inhibitor of TRPC1 channels. The CR1-elicited RBC Ca(++) influx is accompanied by an increase in RBC membrane deformability that positively correlates with the number of preexisting CR1 molecules on RBC membranes. Biochemically, ligation of RBC CR1 causes a significant increase in phosphorylation levels of ß-spectrin that is inhibited by preincubation of RBCs with DMAT, a specific casein kinase II inhibitor. We hypothesize that the CR1-dependent increase in membrane deformability could be relevant for facilitating the transfer of CR1-bound particles from the RBCs to the hepatic and splenic phagocytes.


Assuntos
Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Macrófagos/patologia , Receptores de Complemento/metabolismo , Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Contagem de Eritrócitos , Citometria de Fluxo , Humanos , Macrófagos/metabolismo , Fagocitose , Fosforilação , Espectrina/metabolismo , Canais de Cátion TRPC/metabolismo
15.
Arthritis Rheum ; 63(2): 503-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280005

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is characterized by intravascular activation of the complement system and deposition of complement fragments (C3 and C4) on plasma membranes of circulating cells, including red blood cells (RBCs). The aim of this study was to address whether this process affects the biophysical properties of RBCs. METHODS: Serum and RBCs were isolated from patients with SLE and healthy controls. RBCs from healthy universal donors (type O, Rh negative) were incubated with SLE or control serum. We used flow cytometry to assess complement fragment deposition on RBCs. RBC membrane deformability was measured using 2-dimensional microchannel arrays. Protein phosphorylation levels were quantified by Western blotting. RESULTS: Incubation of healthy universal donor RBCs with sera from patients with SLE, but not with control sera, led to deposition of C4d fragments on the RBCs. Complement-decorated RBCs exhibited significant decreases in both membrane deformability and flickering. Sera from SLE patients triggered a transitory Ca(++) influx in RBCs that was associated with decreased phosphorylation of ß-spectrin and with increased phosphorylation of band 3, two key proteins of RBC cytoskeleton. Finally, incubation with SLE sera led to the production of nitric oxide by RBCs, whereas this did not occur with control sera. CONCLUSION: Our data suggest that complement activation in patients with SLE leads to calcium-dependent cytosketeletal changes in RBCs that render them less deformable, probably impairing their flow through capillaries. This phenomenon may negatively affect the delivery of oxygen to the tissues.


Assuntos
Complemento C4b/metabolismo , Deformação Eritrocítica/fisiologia , Membrana Eritrocítica/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/metabolismo , Soro/metabolismo , Sistema ABO de Grupos Sanguíneos , Adulto , Doadores de Sangue/classificação , Cálcio/metabolismo , Células Cultivadas , Complemento C4b/imunologia , Membrana Eritrocítica/imunologia , Eritrócitos/metabolismo , Feminino , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , Fosforilação , Índice de Gravidade de Doença , Espectrina/metabolismo , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-35982767

RESUMO

High temporal resolution images acquired using 1000fps HSAngio can be used to visualize blood flow patterns and derive flow velocities during neurointerventional procedures. In this work we use this technology to quantify the changes in the blood flow velocities inside a cerebral aneurysm after treatment with three different stents with varying degrees of metal coverage density; stent A : <2%, stent B: 23% and stent C: 40%. A 3D printed in-vitro model of internal carotid artery aneurysm was connected to a flow loop (60% water, 40% glycerol solution used as circulation fluid, circulation flow rate 8 L/s). An automatic programmable injector (KD Scientific Legato 110) was used to inject iodine contrast agent at a rate of 88 mL/min in 3secs. 1000 fps HSAngio sequences of the contrast injection were acquired using an Aries single photon counting detector (Direct Conversion Inc., Stockholm). From these images blood flow velocities were calculated using an optical flow algorithm. As expected the biggest reduction in blood flow velocity inside the aneurysm was 32.4% after deployment of stent C. However, the velocity profile distribution indicated there was still a significant inflow jet into the aneurysm which could be caused by a endoluminal leak between the stent and the vessel wall. The average reduction was only 14% after placement of stent B and 3% after placement of stent A. Blood velocity distribution maps derived using 1000fps HSAngiography technology can be used to evaluate the quality of flow diversion within the aneurysm after placement of stent. Critical information such as endo luminal leakage which can cause treatment failure can also be detected.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35982765

RESUMO

High-speed 1000-fps x-ray Angiography (HSAngio) images can be used to visualize blood-flow patterns and derive flow velocities during neurointerventional procedures. In this work, we present for the very first-time, orthogonal views of contrast injection in an aneurysm model acquired simultaneously using biplane HSAngio imaging. 3-D printed in-vitro models A and B of two different internal carotid-artery aneurysms were connected to a flow loop (circulation fluid: 60% water, 40% glycerol solution, circulation flow rate: 8 L/s). An automatic programmable injector (KD Scientific Legato 110) injected iodine contrast agent at a rate of 88 mL/min for a duration of 3 sec. With an RQA5 spectrum, 1000 fps HSAngio sequences of the contrast injection were acquired simultaneously on the frontal plane using the Actaeon detector (Direct Conversion, Stockholm) and on the lateral plane using the Aries (Direct Conversion, Stockholm) detector. The start of contrast injection and simultaneous biplane x-ray exposures and detector image acquisitions were manually synchronized to capture the initial inflow of contrast into the aneurysm region. For model A the frontal plane images gave a better visualization of the flow streamlines in the parent artery in the inflow (average velocity 28 cm/s) and outflow (average velocity 24 cm/s) region of the aneurysm. The vortices within the aneurysm region especially within the aneurysm dome were better visualized in the lateral plane images (average velocity 27 cm/s). Biplane HSAngio imaging techniques can give more accurate representations of 3-D blood flow within the complex vascular pathology of the human brain, compared to single-plane imaging.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35983493

RESUMO

Digital subtraction angiography (DSA) remains the clinical standard for detailed visualization of the neurovasculature due to its high-spatial resolution; however, detailed blood-flow quantification is impaired by its low-temporal resolution. Advances in photon-counting detector technology have led us to develop High-Speed Angiography (HSA), where x-ray images are acquired at 1000 fps for more accurate visualization and quantification of blood flow. We have implemented a physics-based optical flow method to extract such information from HSA, but validation of the angiography-derived velocity distributions is not straightforward. Computational fluid dynamics (CFD) is widely regarded as the benchmark for hemodynamic analysis, as it provides a multitude of quantitative flow parameters throughout the volume of interest. However, there are several limitations with this method related to over-simplification of boundary conditions and suboptimal meshing (spatial resolution), that make CFD simulation results an inexact criterion for validation. To overcome this issue for HSA validation, CFD was used to generate both simulated high-speed angiograms and the corresponding ground-truth 3D flow fields to better understand the relationship between the 3D volumetric-flow distribution and the 2D projected-flow distribution as is obtained with angiography, and the subsequent 2D approximation of flow velocity. Several geometries were investigated, ranging from simple pipe models to complex patient-specific aneurysms. Simulated datasets were analyzed with the optical flow algorithm, and the effects of flow divergence, quantum mottle, and intensity gradient on the calculation were evaluated. From these simulations, we can evaluate whether flow fields reconstructed from HSA are representative of significant flow patterns in the 3D vasculature.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36034106

RESUMO

Pathological changes in blood flow lead to altered hemodynamic forces, which are responsible for a number of conditions related to the remodeling and regeneration of the vasculature. More specifically, wall shear stress (WSS) has been shown to be a significant hemodynamic parameter with respect to aneurysm growth and rupture, as well as plaque activation leading to increased risk of stroke. In-vivo measurement of shear stress is difficult due to the stringent requirements on spatial resolution near the wall boundaries, as well as the deviation from the commonly assumed parabolic flow behavior at the wall. In this work, we propose an experimental method of in-vitro WSS calculations from high-temporal resolution velocity distributions, which are derived from 1000 fps high-speed angiography (HSA). The high-spatial and temporal resolution of our HSA detector makes such high-resolution velocity gradient measurements feasible. Presented here is the methodology for calculation of WSS in the imaging plane, as well as initial results for a variety of vascular geometries at physiologically realistic flow rates. Further, the effect of spatial resolution on the gradient calculation is explored using CFD-derived velocity data. Such angiographic-based analysis with HSA has the potential to provide critical hemodynamic feedback in an interventional setting, with the overarching objective of supporting clinical decision-making and improving patient outcomes.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35983495

RESUMO

Cerebral aneurysms (CA) affect nearly 6% of the US population and its rupture is one of the major causes of hemorrhagic stroke. Neurointerventionalists performing endovascular therapy (ET) to treat CA rely on qualitative image sequences obtained under fluoroscopy guidance alone, and do not have access to crucial quantitative information regarding blood flow before, during and after treatment - partially contributing to a failure rate of up to 30%. Computational fluid dynamics (CFD) is a powerful tool that can provide a wealth of quantitative data; however, CFD has found limited utility in the clinic due to the challenges in obtaining hemodynamic boundary conditions for each patient. In this work, we present a novel CFD-based simulated angiogram approach (SAA) that resolves the blood flow physics and interaction between blood and injected contrast agent to extract quantitative hemodynamic parameters which can be used to design real-time parametric imaging analysis. The SAA enables correlating contrast agent transport to the underlying hemodynamic conditions via time-density curves (TDC) obtained at several points in the region of interest. The ability of the TDC and the SAA to provide critical hemodynamic parameters in and around CA anatomies, such as washout and local flow changes is explored and presented. This provides invaluable quantitative data to the clinician at the time of intervention, since it incorporates the physics of blood flow and correlates the contrast transport to hemodynamic parameters quantitatively - thereby enabling the clinician to take informed decisions that improve treatment outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA